ECE 447 Fall 2025

Lesson 36
Binary System
Performance, Part 2

SCHEDULE AND ADMIN

Schedule.

Schedule and Admin

• Lesson 36 - Binary digital system performance (Part 2)

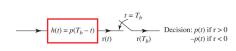
Receivers

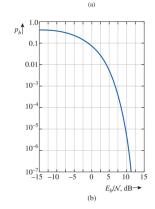
- Lesson 37 Error correction
- Lesson 38 MATLAB Lab 7: Matched filters, multi-path, OFDM, BER (workday - no attendance for class)
- Lesson 39 Advanced topics: OFDM, MIMO, CDMA
- Lesson 40 Course review
- Admin
 - HW8. Assigned *today*. Due 02 Dec (Lsn 39) to Gradescope.

REVIEW

Matched Filters and Binary Signaling Performance

- Why?
- General binary case for real-valued pulses: $h(t) = p(T_b t) q(T_b t)$
- $P_e = P_b = Q\left(\sqrt{\frac{E_p + E_q 2E_{pq}}{2N_0}}\right)$, where $E_{pq} = \int_0^{T_b} p(t)q(t)dt$ is the inner product or correlation of the two pulses
- Example problem: Find the matched filter impulse response h(t) and calculate the total bit error probability P_e assuming equiprobable transmission of 0 or 1

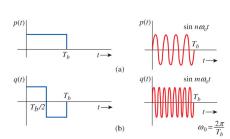



BINARY SIGNALING PERFORMANCE (AWGN)

Polar signaling, q(t) = -p(t)

- Use general equations for P_e and a_0
- $E_p = E_q = \int_0^{T_b} |p(t)|^2 dt$
- $E_{pq} =$
- \bullet $P_e =$
- *a*₀ =

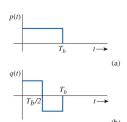
- $E_b = E_p \cdot P(m = 1) + E_q \cdot P(m = 0) =$
- BER depends on pulse energy not shape!

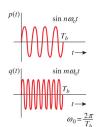


BINARY SIGNALING PERFORMANCE (AWGN)

Orthogonal signaling, q(t) and p(t) are orthogonal over $(0, T_h)$

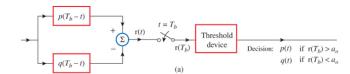
- Use general equations for P_e and a_0
- $E_q =$
- $E_{pq} =$
- P_e =
- $E_b = \frac{E_p + E_q}{2}$ assuming equiprobable
- $a_0 = \frac{1}{2}(E_p E_q)$ (general form)

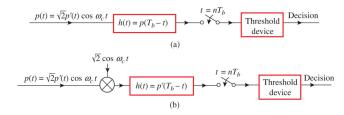

Requires twice as much energy per bit (3db more power) to achieve same performance as polar signaling!



BINARY SIGNALING PERFORMANCE (AWGN)

On-Off Signaling, special case of orthogonal signaling


- Use general equations for P_e and a_0
- $E_p = E_q$? Don't know, just leave E_p and E_q
- $E_{pq} =$
- \bullet $P_e =$
- $E_b = \frac{E_p + E_q}{2} =$
- $a_0 = \frac{1}{2}(E_p E_q) =$



RECEIVERS

Optimum binary threshold detector (baseband)

Coherent detector for bandpass signals

