1202

COMPUTING PRACTICES

Edgar H. Sibley
Panel Editor

The controversy surrounding single number performance reduction is
examined and solutions are suggested through a comparison of measures.

CHARACTERIZING COMPUTER PERFORMANCE
WITH A SINGLE NUMBER

JAMES E. SMITH

Reducing computer performance to a single number
has become one of the more controversial {(and confus-
ing) subjects in performance evaluation. At best, the
need for a single performance number is seen as a nec-
essary evil; many argue that performance is multidi-
mensional and can only be accurately represented with
a series of performance numbers. Despite any such ar-
guments, the fact remains that single numbers will be
used for performance comparisons. This being the case,
it is important that the best single-number measure be
used. Properties of good measures are proposed in this
article, and commonly used measures are studied and
compared to determine which have the desired proper-
ties.

An area where performance is of considerable inter-
est and the temptation to use a single performance
number seems greatest is in scientific (floating point
intensive) applications. Indeed, this is one of the earli-
est computer application areas, and is often used as a
yardstick for measuring overall progress in the art of
computer design. Consequently, discussion and exam-
ples in this article are drawn from the context of cen-
tral processor performance on scientific {floating point
intensive) applications. For example, units of millions
of floating point operations per second (mflops) are
used. The central idea, however, is the reduction of
performance data as measured for a series of programs
to a single number. Hence, extensions to other perfor-
mance environments are straightforward; for example,
one could consider transactions or logical inferences
per second just as easily.

© 1988 ACM 0001-0782/88/1000-1202 $1.50

Communications of the ACM

Many of the problems of reducing performance to a
single number, at least in scientific computing, have
become apparent with the introduction of vector com-
puters. The problem will be exacerbated as highly par-
allel computers come into widespread use. As will be
made clear in this article, the problem results from the
considerable disparity between performance on fast and
slow programs. This difference can be two or more or-
ders of magnitude, and not all single-number measures
are well suited for dealing with differences of this scale.
We will focus on how the wide variance in performance
over individual programs distorts commonly used
aggregate measures.

The use of peak performance as a single-number
performance measure is an extreme example of the
problems that can occur. The peak performance is the
performance that can be achieved under absolutely op-
timum conditions, and then perhaps only for a brief
period of time. With vector and parallel processing, ex-
tremely high peak performance numbers are possible.
Peak performance, however, is generally recognized as
being of no value for predicting actual performance on
the variety of real programs that are actually used. In
fact, the fallacies of using peak performance are so
widely recognized that we will not deal with it any
further. Rather, we will concentrate on attempts to
summarize the typical performance that will be ob-
served on real programs. Problems with single-number
measures are more subtle here than with peak perfor-
mance, yet they can result in gross distortions of actual
performance.

We consider benchmarking the preferred method for
determining typical performance. Our goal is not to

October 1988 Volume 3! Number 10

provide means for accurate benchmarking, but to study
ways of reducing benchmark performance results to a
single number that maintains the accuracy of the origi-
nal benchmarks. In situations where the workload is
clearly understood, both in terms of the actual pro-
grams to be run and their relative usage, benchmark
results summarized by a single performance number
can actually be a very accurate predictor of perfor-
mance.

A fundamental premise of this article is that the time
required to perform a specified amount of computation is the
ultimate measure of computer performance. When a set of
programs is actually run on a specific computer, each
will execute for a certain amount of time, and the com-
puter will be busy for the total time consumed by the
programs. If the same set of programs is run on several
computers, the computer that finishes the set of pro-
grams first (the one consuming the less total time) is
available to do more work. Simply put, we consider one
computer to be faster than another if it executes the
same set of programs in less time.

Example

Let us consider a simple example. Say that a typical
workload to be evaluated consists of two component
programs, so two benchmarks are used to model the
workload. Further assume that we have successfully
run the two benchmarks on each of three computers.
The results are summarized in Table I,

TABLE |. Performance of Three Computers on Two

Benchmarks
Millions of
floating Computer 1 Computer 2 Computer 3
Benchmark pt. ops. time (secs.) time {secs.) time (secs.)
Program 1 100 1 10 20
Program 2 100 1000 100 20
Total Time 1001 110 40

The columns in the table represent the number of
floating point operations in each benchmark and the
time required for each. For simplicity, we have chosen
example programs that do the same amount of work
{floating point operations). For now, we will use ver-
sions of performance measures that give all the pro-
grams equal weight. More general, weighted perfor-
mance measures will be discussed later.

Now we are faced with the problem of summarizing
the performance of each computer with a single num-
ber. One way to do this is to simply add the individual
benchmark times to arrive at the total time. The total
times are given at the bottom of Table I. Another com-
monly used way to summarize performance is to first
express performance as a rate (mflops), and then reduce
the rates for the individual benchmarks to a single
number. The arithmetic mean, geometric mean, and
harmonic mean are commonly used. Details on calcu-
lating each are given in later sections. Table Il contains
the performance data from Table I converted to mflops

October 1988 Volume 31 Number 10

Computing Practices

and the mean performance measures as expressed by
the arithmetic, geometric, and harmonic means.

First consider the total times from Table I. Computer
3 is almost three times faster than Computer 2, and 25
times faster than Computer 1. Using arithmetic mean
mflops, Computer 1 is roughly 10 times faster than
Computers 2 and 3; Computer 2 is slightly faster than
Computer 3. Using geometric mean, Computer 3 is
faster than Computers 1 and 2; Computers 1 and 2 have
the same performance. Finally, with harmonic mean.
relative performance is similar to that achieved with
total time. The three mean mflops measures are in total
disagreement with one another, not just in terms of
absolute performance but in relative performance as
well. The only agreement between any of the measures
is between total time and the harmonic mean.

TABLE Il. Performance of Benchmarks in Mflops

Benchmark Computer 1 Computer 2 Computer 3
Program 1 100.0 mfiops 10.0 mfiops 5.0 mfiops
Program 2 .1 mfiops 1.0 mflops 5.0 mflops
Arith. Mean 50.1 mfiops 5.5 mflops 5.0 mflops
Geom. Mean 3.2 milops 3.2 mfiops 5.0 mflops
Harm. Mean .2 mflops 1.8 mflops 5.0 mflops

Properties of Good Performance Measures

The principle behind benchmarking is to model a real
job mix with a smaller set of representative programs. If
a set of benchmarks is chosen well, each program in
the real job mix has the same performance characteris-
tics as one or more of the benchmark programs. In
addition, weights can be used to proportion each
benchmark type with similar types of computation in
the underlying workload. In this way, a weighted per-
formance measure can be used for the benchmarks
such that the performance measure is directly prapor-
tional to performance on the mix of real programs.

As stated earlier, we consider the ultimate perfor-
mance measure to be the actual time needed to per-
form a specific amount of work. If we use time as the
unit of performance, we arrive at the following prop-
erty.

Property 1. A single-number performance measure for
a set of benchmarks expressed in units of time should
be directly proportional to the total {weighted) time
consumed by the benchmarks.

Even though time is a good unit for performance
measurement, it is common in practice to measure per-
formance as operations per unit time rather than time
itself. In scientific computing, performance is often ex-
pressed in millions of floating point operations per
second (mflops).

When benchmarks are run and performance is calcu-
lated in mflops, performance should be highly corre-
lated with the time measure. That is, if computer 1 is
t times faster than computer 2 when time is used, then
computer 1 should also be ¢ times faster than computer

Communications of the ACM

1203

Computing Practices

1204

2 when rate (mflops) is used. Since rate is inversely
proportional to time for a given amount of computation,
this gives us

Property 2. A single-number performance measure for
benchmarks expressed as a rate should be inversely
praportional to the total (weighted) time consumed by
the benchmarks.

SINGLE-NUMBER PERFORMANCE MEASURES

In light of the preceding discussion, the most obvious
single-number performance measure is total time. This
measure is not only accurate, but has considerable in-
tuitive appeal.

Using time as a benchmark measure has another, less
obvious, advantage. If one were to quote the perfor-
mance of a computer as 10 seconds, the obvious ques-
tion is: For what program(s)? That is, it forces a clear
explanation of the benchmark used to arrive at the
performance figure. On the other hand, if we use a
rate measure like mflops and quote performance as
10 mflops, the same question does not seem to come as
easily, although it is equally important as when time is
used as a measure.

When performance is measured as a rate, single-
number performance measures can become quite mis-
leading, as our earlier example showed. It is common
practice to measure mflops for each component pro-
gram in a benchmark suite, then use these numbers to
calculate an aggregate performance number. This is ex:
actly what is done in Table II for arithmetic, geometric,
and harmonic means. We will now define and discuss
the properties of each of these means to see how well
they satisfy Property 2.

We first define the means assuming equal weights;
that is, each benchmark performs the same amount of
work as measured by the number of floating point oper-
ations. (Weighted means are discussed in a later sec-
tion). We assume a total of n benchmarks. For bench-
mark i, let M; be the performance measured in mflops.
Although the individual benchmarks may perform dif-
ferent numbers of floating point operations, using
mflops has the effect of scaling out these differences. In
general, we let F; be the number of floating point opera-
tions in benchmark i, but because we are weighting the
benchmarks equally in this section, we can simply let F
be a constant number of floating point operations, and
use scaled benchmark times T, so that M; = F/T..

Arithmetic Mean
Arithmetic mean mflops is defined in the following
way:

n M
A-mean = Y —.
i=1 N

If we substitute F/T; for M;, we arrive at

o F
A-mean = 3

=/ n
i=1 Ti

By inspecting this second equation, we see that arith-
metic mean expresses performance in a way that is

Communications of the ACM

directly proportional to the sum of the inverses of the
times. It is not inversely proportional to the sum of the
times. Consequently, the arithmetic mean fails Property
2. The example in Section 1.1 clearly illustrates the
inappropriateness of using arithmetic mean as applied
to mflops. The arithmetic mean mflops bear no rela-
tionship to the time consumed by the benchmarks
when they are actually executed.

The uselessness of arithmetic mean as a performance
predictor cannot be emphasized enough. Giving addi-
tional statistics such as standard deviation to supple-
ment the arithmetic mean does not mitigate the situa-
tion. Using arithmetic mean with a standard deviation
is similar to saying: Here is a meaningless performance
measure (i.e., arithmetic mean}, and here is a measure
(i.e., standard deviation) of just how meaningless it is.

On the other hand, the arithmetic mean of bench-
mark times does satisfy Property 1 since, for a given
number of benchmarks, the arithmetic mean is total
time divided by a constant. Hence, arithmetic mean
time is an accurate performance measure, although it is
not often used.

Geometric Mean
The unweighted geometric mean mflops is expressed as

n 1/n
G-mean = (H M,») .
j=1

Again, performance is not accurately summarized since
it does not have the correct inverse relationship with
total time. Geometric mean has been advocated for use
with performance numbers that are normalized with
respect to ane of the computers being compared [2].
The geometric mean has the property of performance
relationships consistently maintained regardless of the
computer that is used as the basis for normalization.
The geometric mean does provide a consistent measure
in this context, but it is consistently wrong. The solu-
tion to the problem of normalizing with respect to a
given computer is not to use geometric mean, as sug-
gested in [2], but to always normalize results after the
appropriate aggregate measure is calculated, not before.
This last point can be illustrated by using an example
from [2]. Table Il is taken from Table IX in [2].

The performance values are expressed in an unspeci-
fied unit of time. Since time is used, calculating a
weighted sum or arithmetic mean and then (optionally)
normalizing the results is an accurate method for deter-
mining aggregate performance. The authors make this
same point (Rule 3) and use Table IX to illustrate it [2].
If we apply the (weighted) geometric mean as advo-
cated in [2] {Rule 2.2), however, we get contradictory
results. The geometric mean numbers have been added
to the bottom of Table III. Using the arithmetic mean
leads to the conclusion that Processor Y is slowest.
Using geometric mean leads to the contradictory con-
clusion that processor Y is fastest. Normalizing the
benchmark results with respect to any of the processors
and then finding the geometric mean will give the same
relative results as taking the geometric mean of the raw

October 1988 Volume 31 Number 10

TABLE Hll. Example Taken From Table IX of Reference [2]

Benchmark Weight ProcessorX ProcessorY ProcessorZ
Program 1 0.6 20 10 40
Program 2 0.4 40 80 20
Weighted 28 38 32
arithmetic mean
Normalized to X 1.00 1.36 1.14
Weighted 264 23.0 30.3
geometric mean
Normalized to X 1.00 .87 1.15

data. None of these geometric means, however, provide
performance that is proportional to the actual time con-
sumed when running the weighted benchmark mix.
Only the arithmetic mean of the times has this desir-
able property.

Harmonic Mean
Harmonic mean mflops are expressed as

|
H-mean = n 2:1 M
The formula for harmonic mean may appear at first
to lack intuitive appeal, but it is equivalent to taking
the total number of floating point operations and divid-
ing by the total time. This can be illustrated in the
following way. By substituting F/T; for M;,

o Ti
H' = —.
mean 71/'.-l

This is equivalent to n/[(1/F) ¥.; Ti). This, in turn,
is equivalent to nF/Y.: T;. Now, since nF is the total
number of floating point operations, and Y/, T; is the
total time, we have just shown that the harmonic mean
is the total number of operations divided by total time.

20 _

1.8
g § A-mean
h it —
gs 14 G-mean
S H-mean
()]
2 12 4

1.0

T T T Ra L

1.0 1.2 1.4 1.6 1.8 2.0

Benchmark 2 performance
in mflops

(a)

Computing Practices

Using the second of the above expressions for harmonic
mean, we see that it is inversely proportional to the
sum of the benchmark times, and thus satisfies Prop-
erty 2. In the example in Section 1.1, the harmonic
mean performance numbers are entirely consistent
with the total time performance measures.

When we run a single program and calculate its per-
formance as a rate, we determine the total number of
operations, then divide by the total time. Why should it
be any different when the workload is divided into two
different programs? If we take the total number of oper-
ations over bath programs and divide by the total time,
we get the actual performance for the work done.

Weighted Means

The arithmetic, geometric, and harmonic means were
discussed earlier using equal weightings to clearly
show their properties. To properly weight the means,
we assign a weight w; to each of the benchmarks. The
weights add to 1 and represent the fraction of the work-
load done by benchmark i. Weighted versions of each
of the means are as follows:

n
A-mean = Y, wiM;

=1

11)

f=1

G-mean

n

Wi
H-mean =1 L
The weighted versions of the means have properties
similar to the unweighted ones. Specifically, the har-
monic mean is the only one that provides an accurate
relationship to the actual time required to execute the
benchmark programs.

1000 - A-mean
&
g,
gg 100
& = G-mean
§
1]
=
10
H-mean
1 T] 1
1 10 100 1000

Benchmark 2-performance
in mflops

()

FIGURE 1. Mean Performance on Two Benchmarks When Benchmark 1 is a Constant 1.0 mflops.
(a) Benchmark 2 varies from 1.0 to 2.0 mflops. (b) Benchmark 2 varies from 1 to 1000 mflops.

October 1988 Volume 31 Number 10

Communications of the ACM

1208

Computing Practices

DISCUSSION AND CONCLUSIONS
Initially, this article claimed that problems with some
of the single-number performance measures have be-
come more evident with the introduction of vector and
parallel computers. We can now show this graphically.
Let us assume two benchmarks are run, and bench-
mark 1 always performs at a constant rate of 1.0 mflops.
We vary the performance of benchmark 2 and plot the
arithmetic, geometric, and harmonic means of the two
benchmarks. First, in Figure 1a, we let the performance
of benchmark 2 vary from 1.0 to 2.0 mflops. That is,
performance on the two programs is approximately
equal. We see that there is relatively little difference
between the three means. They are equal when the
performance of benchmark 2 is 1.0; otherwise, the
arithmetic mean is slightly higher than the geometric
mean, which is slightly higher than the harmonic
mean. In Figure 1b, the performance of benchmark 2 is
varied from 1 to 1000 mflops. We now see substantial
differences in the three means, literally orders of mag-
nitude. Note that Figure 1b uses logarithmic axes. The
arithmetic mean increases linearly with the perfor-
mance of benchmark 2. The geometric mean increases
as the square root of the performance of benchmark 2,
and the harmonic mean asymptotically approaches the
constant 2.0 mflops. The harmonic mean is in accord
with Amdahl’s law, which, when applied to this exam-
ple, asserts that making the second program infinitely
fast will only have the total time used by both pro-
grams. (An interesting discussion of Amdahl’s law and
several related issues can be found in [3].) We see that
geometric mean does not overstate true performance as
much as arithmetic mean, but still can overstate per-
formance substantially, especially as the performance
difference between fast and slow programs becomes
large.

In this article we have reached the following conclu-
sions:

(1) Arithmetic mean can be used as an accurate mea-
sure of performance expressed as time. On the
other hand, it should not be used for summarizing
performance expressed as a rate such as mflops.

(2) Geometric mean should not be used for summariz-
ing performance expressed as a rate or as a time.

(3) Harmonic mean should be used for summarizing
performance expressed as a rate. [t corresponds ac-
curately with computation time that will actually
be consumed by running real programs. Harmonic

Communications of the ACM

mean, when applied to a rate, is equivalent to cal-
culating the total number of operations divided by
the total time.

(4) If performance is to be normalized with respect to
a specific machine, an aggregate performance mea-
sure such as total time or harmonic mean rate
should be calculated before any normalizing is
done. That is, benchmarks should not be individ-
ually normalized first.

This article has only examined the problem of reduc-
ing data to a single number that accurately character-
izes performance. Issues related to acquiring the bench-
mark data are, at least, as important, and are much
more difficult. In the realm of scientific computing,

[1, 4] contain excellent discussions of the entire bench-
marking process.

REFERENCES

1. Dongarra, J., Martin,].L., and Worlton, J. Computer benchmarking:
Paths and pitfalls. IEEE Spectrum 24, 7 (july 1987), 38--43.

2. Fleming, P.J., and Wallace,].]. How not to lie with statistics: The
correct way to summarize benchmark resuits. Commin. ACM 29, 3
(Mar. 1986), 218-221.

3. Hack, J.J. Peak vs. sustained performance in highly concurrent vec-
tor machines. Comput. 19, 9 (Sept. 1986), 11-19.

4. Worlton,]. Understanding supercomputer benchmarks. Datamation
30, 4 (Sept. 1, 1984), 121-130.

CR Categories and Subject Descriptors: C.4 [Performance of Sys-
tems]: Measurement techniques, Performance attributes

General Terms: Measurement. Performance

Additional Key Words and Phrases: Arithmetic mean, benchmark-
ing, geometric mean, harmonic mean

Received 2/88; accepted 4/88

ABOUT THE AUTHOR:

JAMES E. SMITH is system architect for a series of high per-
formance scientific computer systems being developed by the
Astronautics Corporation of America in Madison, Wisconsin.
He has also been on the faculty of the University of Wiscon-
sin-Madison since 1976 and is currently an associate professor
in the Department of Electrical and Computer Engineering. His
research interests include high speed processor and system
design, particularly multiprocessor systems. Author’s present
address: James E. Smith, Astronautics Technology Center, 5800
Cottage Grove Road, Madison, W1 53716-1387.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given thal copying is by permission of
the Association for Computing Machinery. To copy otherwise, or {o
republish, requires a fee and/or specific permission.

October 1988 Volume 31 Number 10

