Multiscalar Processors

Gurindar S. Sohi
sohi@cs.wisc.edu

Scott E. Breach
breach@cs.wisc.edu

T.N. Vijaykumar
vijay@cs.wisc.edu

Computer Sciences Department
University of Wisconsin-Madison
Madison, W1 53706

Abstract

Multiscalar processors use a new, aggressive imple-
mentation paradigm for extracting large quantities of instruc-
tion level parallelism from ordinary high level language pro-
grams. A single program is divided into a collection of tasks
by a combination of software and hardware. The tasks are
distributed to a number of parallel processing units which
reside within a processor complex. Each of these units
fetches and executes instructions belonging to its assigned
task. The appearance of a single logical register file is main-
tained with a copy in each parallel processing unit. Register
results are dynamically routed among the many parallel pro-
cessing units with the help of compiler-generated masks.
Memory accesses may occur speculatively without
knowledge of preceding loads or stores. Addresses are
disambiguated dynamically, many in parallel, and processing
waits only for true data dependences.

This paper presents the philosophy of the multiscalar
paradigm, the structure of multiscalar programs, and the
hardware architecture of a multiscalar processor. The paper
also discusses performance issues in the multiscalar model,
and compares the multiscalar paradigm with other para-
digms. Experimental results evaluating the performance of a
sample of multiscalar organizations are also presented.

1. Introduction

The basic paradigm of sequencing through a program,
i.e, the fetch-execute cycle using a program counter, has
been with us for about 50 years. A consequence of this
sequencing paradigm is that programs are written with the
tacit assumption that instructions will be executed in the
same order as they appear in the program. To achieve high
performance, however, modern processors attempt to execute
multiple instructions simultaneously, and in some cases in a
different order than the original program sequence. This
reordering may be done in the compiler, in the hardware at
execution time, or both. Superscalar and VLIW processors
belong to this class of architectures that exploit instruction
level parallelism (ILP).

ILP processors and compilers typically convert the
total ordering of instructions as they appear in the original
program into a partial ordering determined by dependences
on data and control. Control dependences (which appear as
conditional branches) present a major obstacle to highly
parallel execution because these dependences must be
resolved before all subsequent instructions are known to be
valid.

Focusing on control dependences, one can represent a
static program as a control flow graph (CFG), where basic
blocks are nodes, and arcs represent flow of control from one
basic block to another. Dynamic program execution can be
viewed as walking through the program CFG, generating a
dynamic sequence of basic blocks which have to be executed
for a particular run of the program.

To achieve high performance, an ILP processor must
attempt to walk through the CFG with a high level of paral-
lelism. Branch prediction with speculative execution is one
commonly-used technique for raising the level of parallelism
that can be achieved during the walk. The primary constraint
on any parallel walk, however, is that it must preserve the
sequential semantics assumed in the program.

In the multiscalar model of execution, the CFG is par-
titioned into portions called tasks. A multiscalar processor
walks through the CFG speculatively, taking task-sized steps,
without pausing to inspect any of the instructions within a
task. A task is assigned to one of a collection of processing
units for execution by passing the initial program counter of
the task to the processing unit. Multiple tasks then execute in
parallel on the processing units, resulting in an aggregate
execution rate of multiple instructions per cycle.

At this level, the concept sounds simple, however, the
key to making it work is the proper resolution of inter-task
data dependences. In particular, data that is passed between
instructions via registers and memory must be routed
correctly by the hardware. Furthermore, it is in this area of
inter-task data communication that the multiscalar approach
differs significantly from more traditional multiprocessing
methods.

This paper describes the multiscalar approach to
exploiting fine-grain parallelism (or instruction-level paral-
lelism or ILP). Section 2 provides an overview of the multis-
calar paradigm. A breakdown of the distribution of the avail-
able processing unit cycles in multiscalar execution follows
in Section 3. In Section 4, we compare multiscalar with
other ILP paradigms. A performance evaluation of potential
configurations of a multiscalar processor is given in Section

5. In Section 6, we summarize this work and offer conclud-
ing remarks.

2. An Overview of the Multiscalar Paradigm

2.1. Philosophy and Basics

The objective of the non-sequential walk of the CFG
taken by a multiscalar processor is to establish a large and
accurate dynamic window of instructions from which
independent instructions can be extracted and scheduled for
parallel execution. (An instruction window, in ILP parlance,
is an assemblage of instructions under consideration for exe-
cution.) To perform this function, a multiscalar processor
walks through the CFG in large steps, not instruction by
instruction (as is the case in a sequential processor), nor basic
block by basic block, but rather task by task.

A task is a portion of the CFG whose execution
corresponds to a contiguous region of the dynamic instruc-
tion sequence (e.g., part of a basic block, a basic block, mul-
tiple basic blocks, a single loop iteration, an entire loop, a
function call, etc.). A program is statically partitioned into
tasks which are demarcated by annotations of the CFG (more
on this in Section 2.2). For each step of its walk, a multis-
calar processor assigns a task to a processing unit for execu-
tion, without concern for the actual contents of the task, and
continues its walk from this point to the next point in the
CFG.

A possible microarchitecture for a multiscalar proces-
sor is shown in Figure 1. In most general terms, consider a
multiscalar processor to be a collection of processing units
with a sequencer which assigns tasks to the processing units.
Once a task is assigned to a processing unit, the unit fetches
and executes the instructions of the task until it is complete.
Multiple processing units, each with its own internal instruc-
tion sequencing mechanism, support the execution of multi-
ple tasks, and thereby multiple instructions, in any given time
step. The instructions contained within the dynamic instruc-
tion window are bounded by the first instruction in the earli-
est executing task and the last instruction in the latest execut-
ing task. Given that each task may contain loops and func-
tion calls, this observation implies that the effective size of
the instruction window may be extremely large. A key point
is that not all the instructions within this wide range are
simultaneously being considered for execution, only a lim-
ited set within each of the processing units.

Consider the CFG in Figure 2 of a program fragment
with five basic blocks, A, B, C, D, and E. Suppose the
dynamic sequence of basic blocks executed is A} B} C1 B}
B} C3 Di Al BB C:D? A} B} C}BiCED? E Inthis
sequence, the superscripts and subscripts identify the incar-
nation of the basic block in relation to the outer and inner
loops, respectively. In a sequential processor, the dynamic
instructions corresponding to this sequence of basic blocks
are generated as program control navigates through the CFG,
executing one instruction at a time. To ensure a correct exe-
cution on an ILP processor, it must appear that the instruc-
tions among all basic blocks execute in precisely this same
sequential order, regardless of what actually transpires.

Consider an iteration of the outer loop from the CFG
in Figure 2 as a task. That is, let static basic blocks A, B, C,
and D (as well as the control flow through them) comprise a

Head Tail

pug Processing)

Unit

(| Processing |

Unit

I nter connect

Data .« o o 2 . o e Data
Bank 3 Bank
o

Figure 1: A Possible Microarchitecture
of a Multiscalar Processor.

0050 0C

Figure 2: An Example Control Flow Graph.

task. We may assign a task corresponding to the first itera-
tion of the outer loop to a processing unit, followed by the
second iteration to the next processing unit, and so on.

The processing unit that is assigned the first iteration
sequences through its task to execute the dynamic instruc-
tions of basic blocks Al B Ci B B} C} Di. Likewise, the
following processing units execute the dynamic instructions
of basic blocks A? B B3 CZ D? and A} B} C$ B2 C3 D3, as
per the second and third iterations respectively. In this
example, the potential result of this approach is the execution
of three useful instructions in a cycle. For instance, in a
given cycle, the processing units might execute instructions
from dynamic basic blocks B3, CZ, and B}, simultaneously.

It is important to observe that tasks, although separate
groups of instructions, are not independent. Because tasks
are portions of a sequential instruction stream, the data and
control relations among individual instructions must be
honored during execution. A key issue in a multiscalar
implementation is the communication of data and control
information among the parallel processing units. That is,
how do we provide the appearance of a sequential walk even
though in reality we perform a non-sequential walk (perhaps
considered radically non-sequential) through the CFG?

To maintain a sequential appearance we employ a
twofold strategy. First, we ensure that each processing unit
adheres to sequential execution semantics for the task
assigned to it. Second, we enforce a loose sequential order
over the collection of processing units, which in turn imposes
a sequential order on the tasks. The sequential order on the
processing units is maintained by organizing the units into a
circular queue. Head and tail pointers indicate the units that

are executing the earliest and the latest of the current tasks,
respectively. For instance in the example of Figure 2, the
processing unit at the head is executing the first iteration,
preceding the unit executing the second iteration, preceding
the tail unit executing the third iteration.

As instructions in a task execute, values are both con-
sumed and produced. These values are bound to storage
locations, namely registers and memory. Because a sequen-
tial execution model views storage as a single set of registers
and memory locations, multiscalar execution must maintain
this view as well. Furthermore, multiscalar execution must
ensure that the values consumed and produced by instruc-
tions are the same as those in a sequential execution. In the
example, values consumed by an instruction in dynamic
basic block B3 must be the values resulting from the execu-
tion of instructions in A} B C} B} BL C} D} A? B2, as well
as preceding instructions in B3. In order to provide this
behavior, we must synchronize communication between
tasks.

In the case of registers, the control logic synchronizes
the production of register values in predecessor tasks with
the consumption of these values in successor tasks via reser-
vations on registers. The register values a task may produce
can be determined statically and maintained in a create mask
(more details in Section 2.2). At the time a register value in
the create mask is produced, it is forwarded to later tasks,
i.e., to processing units which are logical successors of the
unit, via a circular unidirectional ring (see Figure 1). The
reservations on registers for a successor task are given in the
accum mask, which is the union of the create masks of
currently active predecessor tasks. As values arrive from
predecessor units, reservations are cleared in the successor
units. If a task uses one of these values, the consuming
instruction can proceed only if the value has been received;
otherwise it waits for the value to arrive.

In the case of memory, the situation is somewhat dif-
ferent. Unlike register values, it cannot be precisely deter-
mined ahead of time which memory values are consumed or
produced by a task. If it is known that a task consumes a
memory value (via a load instruction) that is produced (via a
store instruction) in an earlier task, it is possible to synchron-
ize the consumption and production of this value. That is,
the load in the successor task can be made to wait until the
store in the predecessor task has completed (similar in con-
cept to the situation for registers, although the exact syn-
chronization mechanism would be different due to the dispar-
ity in the sizes of the name-spaces).

In the more common case where such knowledge is
not available, either a conservative or an aggressive approach
may be undertaken. The conservative approach is to wait
until it is certain that the load will read the correct value.
This option typically implies holding back loads within a
task until all predecessor tasks have completed all stores,
with the likely outcome being near-sequential execution.
The aggressive approach is to perform loads speculatively,
with the expectation that a predecessor task will not store a
value into the same location at a later time. A check must be
made dynamically to ensure that no predecessor task writes a
value into a memory location previously read by a successor
task. If this check identifies a load and store that conflict (do
not occur in the proper order), the later task must squash its
execution and initiate appropriate recovery action. (A

multiscalar processor takes the aggressive approach.)

Due to the speculative nature of multiscalar execution,
it must be possible to both confirm correct execution as well
as recover from incorrect execution. The execution of
instructions within tasks may be considered as speculative
for two reasons: (i) control speculation, and (ii) data specula-
tion. As tasks execute, the correct path of execution through
the program CFG is resolved. If control speculation, i.e,
prediction of the next task, is incorrect, the following task(s)
must be squashed and the correct task sequence resumed.
Likewise, if a task uses an incorrect data value, the offending
task must be squashed and the correct data value recovered.
In any case, the action of squashing a task results in the
squashing of all tasks in execution following the task (other-
wise, maintaining sequential semantics becomes complex).

To facilitate maintaining sequential semantics, a mul-
tiscalar processor retires tasks from the circular queue of
units in the same order as it assigns them. During specula-
tive execution, a task produces values which may or may not
be correct. It is only certain the values produced by a task
are correct, and may be consumed safely by other tasks, at
the time the retirement of a task is imminent. Nevertheless,
values are optimistically forwarded for speculative use
throughout the execution of a task. Because a task forwards
values to other tasks as it produces them (more details in
Section 2.2 and Section 2.3), most, if not all, of its values
have been forwarded by the time it becomes the head. Thus,
retiring the task may simply be a matter of updating the head
pointer to free the processing unit so a new task may be
assigned.

To illustrate the power of the multiscalar model of
execution, consider the example in Figure 3. In this code
segment, execution repeatedly takes a symbol from a buffer
and runs down a linked list checking for a match of the sym-
bol. If a match is found, a function is called to process the
symbol. If no match is found, an entry in the list is allocated
for the new symbol. After an initial startup, additions to the
list become infrequent, because most symbols match an ele-
ment already in the list. In a multiscalar execution, a task
assigned to a processing unit comprises one complete search
of the list with a particular symbol. The processing units per-
form a search of the linked list in parallel, each with a

for (indx = 0; indx < BUFSIZE; indx++) {
/* get the symbol for which to search */
symbol = SYMVAL (buffer[indx]);

/* do a linear search for the symbol in the list */
for (list = listhd; list; list = LNEXT(list)) {
/* if symbol already present, process entry */
if (symbol == LELE(list)) {
process(list);

break;
}
}
/* if symbol not found in the list, add to the tail */
if (!ist) {

addlist(symbol);

Figure 3: An Example Code Segment.

symbol, resulting in an overall execution of multiple instruc-
tions per cycle. The details of the parallel execution of what
at first appears to be a serial program are presented
throughout the rest of this paper.

2.2. Multiscalar Programs

A multiscalar program must provide the means to sup-
port a fast walk (through the CFG) that distributes tasks en
masse to processing units. Below, we describe three distinct
types of information maintained within a machine-level mul-
tiscalar program to facilitate this end: (i) the actual code for
the tasks which comprises the work, (ii) the details of the
structure of the CFG, and (iii) the communication charac-
teristics of individual tasks.

The specification of the code for each task is routine.
A task is specified as a set of instructions, in the same
fashion as a program fragment for a sequential machine.
Although the instruction set architecture (ISA) in which the
code is represented affects the design of each individual pro-
cessing unit, it has little influence on the rest of the design of
a multiscalar processor. Hence, the instruction set used to
specify the task is of secondary importance. (The
significance of this fact is that an existing ISA may be used
without a major overhaul.)

The sequencer of a multiscalar processor requires
information about the program control flow structure to facil-
itate a rapid traversal of the CFG. In particular, it needs to
know which tasks are possible successors of any given task
in the CFG. The multiscalar sequencer uses this information
to predict one of the possible successor tasks and to continue
the CFG walk from this point. (Unlike the corresponding
case in a sequential execution, control proceeds to a succes-
sor task before the current task is complete.) Such informa-
tion can be determined statically and placed in a task descrip-
tor. The task descriptors may be interspersed within the pro-
gram text (for instance, before the code of the task) or placed
in a single location beside the program text (for instance, at
the end).

To coordinate execution among different tasks, it is
necessary to characterize each task according to the set of
values that may be consumed by the task and the set of
values that may be produced by the task. In a sequential exe-
cution, this information is discovered during the instruction
decode process as instructions are fetched and inspected.
However, the objective in a multiscalar execution is to assign
a task to a processing unit and to proceed to the next task
without inspecting the contents of the assigned task.

The procedure to handle register values is straightfor-
ward. (Memory values are handled as described in Section
2.3.) A static analysis of the CFG is performed by the com-
piler to supply the create mask that indicates the register
values a task may produce®. A natural location for the create
mask is within the task descriptor. Since a task may contain

L1t is not strictly required to specify which values a task may
consume. As a task executes and consumes values, it waits for a par-
ticular value only if the value has not yet been produced (by an active
predecessor task). Otherwise, it finds the value within local storage
[1]. The value present within local storage is the product of an ear-
lier task that has forwarded a value around the ring.

multiple basic blocks whose execution is governed by
(dynamically resolved) control conditions, it is not possible
to determine statically which register values will be created
dynamically. As such, the create mask must be conservative,
and thereby includes all register values that may be produced.

As a processing unit executes the instructions in a
task, register values are produced which must be forwarded
to succeeding tasks. Because the unit cannot determine a
priori which instructions comprise its assigned task (the
instructions may not even have been fetched), it cannot know
which instruction performs the update to a register that must
be forwarded to other tasks. In accordance with sequential
semantics, only the last update of a register in the task should
be forwarded to other tasks. The option exists to wait until
all instructions in a task have been executed (i.e., no further
updates of registers are possible). However, this strategy is
not expedient since it often implies that other tasks must
wait, possibly a considerable period of time, for a value that
is already available.

The compiler, on the other hand, has knowledge of the
last instruction in a task to update a particular register. It can
mark this instruction as a special (operate-and-forward)
instruction that, in addition to carrying out the specified
operation, forwards the result to following processing units.
Furthermore, as a unit executes the instructions of its task, it
can identify those registers for which values are not going to
be produced (although statically it appeared a value might be
produced). By virtue of the fact that later tasks must wait for
any register that an earlier task indicates it might produce
(regardless of whether a value is actually produced), it is
necessary to release such registers in order to continue exe-
cution. When a register is released, the value is forwarded to
later units.

For the same reasons a processing unit cannot deter-
mine which dynamic instructions comprise its assigned task,
it likewise cannot determine a priori on which instruction a
task will complete, i.e., at what point control flows out of the
task. At the time the CFG is partitioned by the compiler, the
boundaries of a task and the control edges leaving the task
are known. An instruction at one of these exiting edges may
be marked with special stopping conditions so that at the
time such an instruction is encountered by the processing
unit the appropriate conditions can be evaluated. If the stop-
ping conditions associated with the instruction are satisfied,
the task is complete.

The specification of forwarding and stopping informa-
tion is best viewed as the addition of a few tag bits (forward
and stop bits, respectively) to each instruction in a task.
Nevertheless, it may be necessary to implement these tag bits
differently if the basic ISA is not to be changed. One possi-
ble implementation is to provide a table of tag bits to be asso-
ciated with each static instruction. As the hardware fetches
the instructions from the program text and the corresponding
tag bits from the table, it concatenates the pair to produce a
new instruction. The new instructions can be maintained in
the instruction cache, so that the overhead of accessing two
memory locations (one for the instructions and one for the
bits) is incurred only in the case of a cache miss. The release
of a register may be indicated by adding a special release
instruction to the base ISA or by overloading an existing
instruction of the base ISA.

A pictorial representation of the information assem-
bled within a task of a multiscalar program is given in Figure
4. This depiction centers around the assembly language for
the example of Figure 3. In addition to the assembly
language, the figure contains a task descriptor, a set of for-
ward bits, and a set of stop bits. Recall that the task under
consideration consists of one iteration of the outer loop. The
task executes the iterations of the inner loop to search for a
match of a symbol in a linked list. If a match is found, a
function is called to process the symbol. If no match is
found, an entry in the list is allocated for the symbol. Thus,
the task has two possible successor tasks, both of which are
the targets of a branch instruction. The successor tasks are
either the next iteration of the outer loop (Targl = OUTER),
or an exit from the outer loop (Targ2 = OUTERFALLOUT).
The task completes when the end of the outer loop is
reached. Consequently, the last instruction in the outer loop
is tagged with a set of bits which indicate a ““Stop Always’’
condition.

The task creates values that are bound to the registers:
$4, $8, $17, $20, $23. The last instruction to write into regis-
ters $4, $20, and $23 has a forward bit set. Since $8 and $17
are updated repeatedly in the inner loop, and only the last
update needs to be forwarded, the registers are released at the
exit of the inner loop. Along the same lines, $4 is released if
the inner loop is skipped, since the instruction that last
updates and forwards $4 (in the inner loop) is not executed in
this case. It should be noted that a value bound to a register
is only sent once per task. Hence, all subsequent forwards
and releases of a value already forwarded or released are
ignored. To illustrate, the release of $4 is encountered (and
ignored) if the instruction that last updates and forwards $4
(in the inner loop) is executed. (An alternative to this
approach, which may have the undesirable effect of creating
complex intra-task control structures, is to incorporate addi-
tional basic blocks to eliminate such a scenario.)

So far in our discussion we have assumed that all
values which are created by a task are communicated to other
tasks. To maintain program semantics, however, we do not
need to communicate all values created by a task. Rather,
only values that are potentially live outside a task, i.e., are
not dead at the end of a task, need to be communicated.
Going back to the example of Figure 3, we can see that the
only register value that is live outside the task is the induc-
tion variable, $20; only $20 must appear in the create mask.
No other register value needs to be forwarded, and no release
instructions need be present. Furthermore, any stores made
to the stack frame inside the process function need not be
communicated to later tasks. Since the live ranges of regis-
ters are already known to a compiler, incorporating dead
register analysis is fairly straightforward. At the time of
writing of this paper, we are still investigating the subject of
dead memory value analysis.

A multiscalar program may be generated from an
existing binary by augmenting the binary with task descrip-
tors and tag bits. This multiscalar information may be
located within or perhaps to the side of the program text.
The job of migrating a multiscalar program from one genera-
tion to another generation of hardware might be as simple as
taking an old binary, determining the CFG (a routine task),
deciding upon a task structure, and producing a new binary.
The old multiscalar information is removed and replaced by
new multiscalar information to form an updated version of

Targ Spec Branch, Branch @
Targl OUTER o ”
Targ2 OUTERFALLOUT = =
Create mask $4,$8,$17,$20,$23 g =
[(2]

OUTER:

addu $20, $20, 16

Id $23, SYMVAL-16($20) F

move $17,$21

beq $17, $0, SKIPINNER
INNER:

Id $8, LELE($17)

bne $8, $23, SKIPCALL

move $4, $17

jal process

jump INNERFALLOUT
SKIPCALL:

Id $17, NEXTLIST($17)

bne $17, $0, INNER
INNERFALLOUT:

release $8, $17

bne $17, $0, SKIPINNER

move $4, $23 F

jal addlist
SKIPINNER:

release $4 s

bne $20, $16, OUTER Ah‘,;’;’ys
OUTERFALLOUT:

Figure 4: An Example of a Multiscalar Program.

the binary. The core of the binary, however, the fundamental
instructions which describe the work of each task remain vir-
tually the same. Only multiscalar specific instructions and
any adjustments to relative addresses need be accommo-
dated. This approach bodes well for a smooth software
growth path from one hardware generation to the next, espe-
cially if recompilation from the source code is not practical.

2.3. Multiscalar Hardware

The function of the multiscalar hardware is to walk
through the CFG, assign tasks to the processing units, and
execute these tasks with the appearance of sequential execu-
tion. The job of determining the order of the tasks is the
responsibility of the sequencer. Given the address of a task
descriptor, the sequencer fetches the task descriptor and
invokes the task on the processing unit by (i) providing the
address of the first instruction, (ii) specifying the create
mask, and (iii) constructing the accum mask for the task.
The sequencer determines the next task to be assigned by
using information in the task descriptor to predict one of the
possible successor tasks (using a static or dynamic prediction
scheme). A processing unit independently fetches and exe-
cutes the instructions of its task (until it encounters an
instruction with the stop bit set, which indicates the task is
complete). The processing units are connected via a uni-
directional ring which is used to forward information (reser-
vations, values, etc.) from one unit to the next [1].

The data cache banks and the associated interconnect
(between the data cache banks and the units) are straightfor-
ward (except for the scale). Updates of the data cache are
not performed speculatively. Instead, additional hardware,
known as an Address Resolution Buffer or ARB [3-5], is pro-
vided to hold speculative memory operations, detect viola-
tions of memory dependences, and initiate corrective action

as needed?. The ARB may be viewed as a collection of the
speculative memory operations of the active tasks. The
values corresponding to these operations reside in the ARB
and update the data cache as their status changes from specu-
lative to non-speculative. In addition to providing storage for
speculative operations, the ARB tracks the units which per-
formed the operations with load and store bits. A memory
dependence violation is detected by checking these bits (if a
load from a successor unit occurred before a store from a
predecessor unit, a memory dependence was violated). As
the ARB is a finite resource, it may run out of space. If this
situation should occur, a simple solution is to free ARB
storage by squashing tasks. This strategy guarantees space in
the ARB and forward progress. No deadlock problems exists
because, in the worst case, all tasks which consume ARB
storage may be squashed (the head which does not require
ARB storage is not squashed). A less drastic alternative is to
stall all processing units but the head. As the head advances,
entries are reclaimed and the stall lifted (we are investigating
the use of this approach).

Going back to the example of Figure 3, if two sym-
bols being processed concurrently happen to be the same,
and a call to the process function for the first search
updates the memory location corresponding to the symbol,
the second search must see the updated memory location.
That is, if the unit processing the second symbol loads from
the memory location before the unit processing the first sym-
bol stores into the memory location, a squash must occur. (A
squash does not occur if the dynamic sequence of events is
such that the second unit loads from the memory location
after the first unit stores to the memory location.) Likewise,
when a symbol is inserted into the list, subsequent searches
must see the updated list. In the same fashion, the cases
where later tasks do not see the updated list are detected and
the tasks squashed accordingly. Moreover, the storage pro-
vided by the ARB is used to rename memory such that multi-
ple function calls can be executed in parallel, yet retain
sequential semantics. That is, if multiple calls to process
are to proceed in parallel, each call requires its own (suitably
renamed) stack frame which, as per a sequential execution,
reuses the same memory locations.

The microarchitecture illustrated in Figure 1 is just
one possible configuration for a multiscalar processor; other
microarchitectures are certainly possible. The invariant that
has to be preserved is the appearance of a sequential ordering
amongst the instructions, with the register and memory
values flowing from earlier tasks to later tasks. An alterna-
tive microarchitecture might share the functional units (such
as the floating point units) between the different processing
units. Another possible microarchitecture is one in which the
ARB and the data caches are moved across the interconnect
to the same side as the processing units. (In this case, the
functionality of the ARB and data caches is provided by a
collection of temporally inconsistent caches/buffers with
memory values forwarded between them on a ring, analo-
gous to the mechanism for registers.) A proper discussion of
these alternate microarchitectures is beyond the scope of this

2 Since the task at the head is the only task that is guaranteed
to be non-speculative, memory operations carried out by all units, ex-
cept the head, are speculative.

paper.

3. Distribution of Cyclesin Multiscalar Execution

We now take a more detailed look at the multiscalar
model by considering the distribution of the available pro-
cessing unit cycles in multiscalar execution. Recall that our
objective is to have each processing unit performing useful
computation, with the processing units collectively executing
multiple instructions in a given cycle. The best case is to
perform as much useful computation per cycle as the proces-
sor complex is capable. The best case (of all useful computa-
tion) may not be realized because of cycles in which a unit (i)
performs non-useful computation, (ii) performs no computa-
tion, or (iii) remains idle. Each cycle spent in these
categories is a cycle that is lost from the best case.

The non-useful computation cycles represent work
that is ultimately squashed; computation may be squashed as
a result of the use of (i) an incorrect data value or (ii) an
incorrect prediction. The no computation cycles may be
attributed to (i) waiting for a value created by an instruction
in a predecessor task, (ii) waiting for a value created by an
instruction in the same task (for example, a high-latency
operation or a cache miss), or (iii) waiting for the task to be
retired at the head (because all instructions within the task
have executed). The idle cycles account for time in which a
processing unit has no assigned task (due for the most part to
re-assigning tasks in squash recovery). Below, we discuss
several concepts and see the influence on the non-useful and
no computation cycles in multiscalar execution. (We do not
address the loss due to idle cycles as it amounts to a rela-
tively insignificant portion of the total in most cases.)
Although we discuss a concept/issue under one heading, the
impact typically spans multiple headings.

3.1. Non-Useful Computation Cycles

Since squashing a particular task means likewise
squashing all tasks that follow it, a squash may have a severe
impact on the performance of a multiscalar processor. Recall
that computation may be squashed as a result of the use of (i)
an incorrect value or (ii) an incorrect prediction. To reduce
the impact of this squash overhead, we may (i) reduce the
chances of a squash by synchronizing data communication or
(ii) determine early, before much non-useful computation has
been performed, that a squash is inevitable.

3.1.1. Synchronization of Data Communication

The communication of register data values is syn-
chronized as a consequence of the register file mechanism (as
intended). On the other hand, the communication of memory
data values must be synchronized explicitly. A memory
order sguash occurs if a later task loads from a memory loca-
tion before an earlier task stores to this same memory loca-
tion.

Our experience in the programs that we have exam-
ined is that such squashes do indeed occur in practice, but
rarely are the squashes due to updating an arbitrary memory
location. Almost all memory order squashes that we have
encountered in our experiments occur due to updates of glo-
bal scalars and structures, typically file and buffer pointers
and counters. (Typically these variables have their address
taken, and therefore cannot be register allocated.)

Fortunately, accesses to static global variables are
amongst the easiest memory accesses for a compiler to
analyze, much easier than accesses to arbitrary heap loca-
tions. Once (potentially) offending accesses are recognized,
accesses to the memory location can be synchronized to
ensure that conflicting loads and stores occur in the proper
order.

Such synchronization may be accomplished in a
variety of ways. It may possible to create an artificial depen-
dence on a register (to synchronize memory communication
with register communication), to delay the load for a given
number of cycles (to reduce the probability of it occurring
before the store), or to use explicit signal-await synchroniza-
tion. Note that any synchronization may create inter-task
dependences which, as we shall see, can contribute to no
computation cycles.

3.1.2. Early Validation of Prediction

The determination of whether a task should be
squashed due to an incorrect prediction is normally made at
such time as the exit point of the immediately preceding task
is known. As one might expect, this point is in most cases at
the end of the execution of a task. During this passage of
time, many cycles of non-useful computation may have been
performed in later tasks.

For example, if loop back is predicted each time for a
loop, we may have to wait for all instructions in the last itera-
tion to be executed before we recognize the following itera-
tions are non-useful computation that must be squashed. If
an iteration consists of hundreds of instructions, the time
taken to determine that no more iterations should be executed
may represent many hundreds of cycles of non-useful com-
putation.

To minimize the loss due to these cycles, we may con-
sider validating prediction early. If some computation is per-
formed soon after a task is initiated to determine whether the
next task was indeed predicted correctly, the time spent for
non-useful computation may be significantly reduced.
Returning to the loop example, if the last loop iteration is
recognized soon after the iteration begins execution, the next
unit may be redirected to the task at the loop exit rather than
execute another (non-useful) loop iteration.

Several options exist for validating prediction early.
One option is to introduce explicit validate prediction
instructions into a task. Another option, directed specifically
at loop iterations, which does not require new instructions
(but still requires additional instructions as compared to
sequential execution), is to change the structure of the (com-
piled) loop so that the test for loop exit occurs at the begin-
ning of the loop.

3.2. No Computation Cycles

It is important to distinguish between idle cycles and
no computation cycles. In the idle cycles case, the process-
ing unit does not perform useful computation because it has
no assigned task. In the no computation cycles case, the pro-
cessing unit does have an assigned task, but it is unable to
perform useful computation. Of these lost cycles, some may
be an unavoidable characteristic inherent in the sequential
code, while others may be a by-product of the task partition-
ing and scheduling for multiscalar execution.

3.2.1. Intra-Task Dependences

An obvious source of no computation cycles is depen-
dences between the instructions of the same task. As each
task is like a small program, and each processing unit is like
a uniprocessor, any of the plethora of techniques available to
reduce lost cycles in a uniprocessor may be applied to reduce
the impact of such cycles. Examples of these techniques
include (but need not be limited to) code scheduling, out-of-
order execution, and non-blocking caches.

3.2.2. Inter-Task Dependences

A more significant source of no computation cycles in
multiscalar execution are dependences between the instruc-
tions of different tasks. That is, cycles in which a later task
waits for values from an earlier task. If a producing instruc-
tion is encountered late and a consuming instruction is
encountered early among tasks executing concurrently, the
consuming task may stall on the producing task. In such a
case, near-sequential execution may result.

Consider our working example. If the induction vari-
able for the outer loop had been updated at the end of the
loop (as would normally be the case in code compiled for a
sequential execution), then all iterations of the outer loop
would be serialized, since the next iteration needs the induc-
tion variable early in order to proceed. If, on the other hand,
we update and forward the induction variable early in the
task, but keep a copy of the induction variable for local use
or modify the local use to factor in the update (as we have
done in the code of Figure 4), then the critical path through
the computation is not unnecessarily aggravated, and the
tasks may proceed in parallel.

In our experience with benchmark programs, we have
found this sequential outlook to be quite pervasive. The
sequential point of view is understandable, since the pro-
grammer assumes a sequential machine model. Furthermore,
there is no reason to assume a performance improvement is
to be gained by making local copies of variables or by mak-
ing arcane modifications to existing code. Nevertheless, for
efficient multiscalar execution, it is crucial to remove such
limitations. In many cases, a compiler may have great suc-
cess (for example, arithmetic induction variables). In other
cases, a compiler may have only limited success (for exam-
ple, memory induction variables). In some cases, these
impediments may be unavoidable or require changes to the
source program to be overcome.

3.2.3. Load Balancing

In multiscalar execution, since tasks must be retired in
order, cycles may be lost if tasks are not of the proper granu-
larity and (roughly) the same size in terms of dynamic
instructions. That is, a processing unit which completes a
comparatively short task performs no computation while it
waits for all predecessor tasks to be retired at the head®.

% These no computation cycles may be reduced if we provide a
somewhat more complicated implementation of the ““circular queue’’
which connects the units and additional resources to maintain the
results of speculative task execution.

A key factor in minimizing cycles lost due to load
balancing (and many of the other lost cycles for that matter)
is to choose tasks of an appropriate granularity. Flexibility in
the choice of the grain size of a task implies that only
minimal restrictions be placed on what may be contained in a
task. In particular, a task should be free to contain function
calls. (In our working example, the appropriate granularity
for a task is an iteration of the outer loop, which contains a
function call.)

Since a function may have many call sites, we provide
differing views on how a function should be executed. From
one call site we may want the function to be executed as a
collection of tasks. Whereas, from another call site we may
want the entire function to be executed as part of a single
task. To accommodate such differing views with a single
version of the code, a function may be treated as a
suppressed function, i.e., a function in which all multiscalar-
specific annotations are ignored under appropriate cir-
cumstances.

4. Comparison of Multiscalar with Other Paradigms

4.1. Conventional Wisdom

The multiscalar paradigm challenges conventional
wisdom in ILP processing in several respects. Herein, we
examine a number of cases in which the multiscalar approach
counters the tenets of conventional wisdom.

Branch prediction accuracy must limit ILP.

The issue at hand is the ability to establish a large and accu-
rate instruction window for ILP extraction. The usual argu-
ment supposes that if the average branch prediction accuracy
is 90%, then speculating five branches ahead means there is
only about a 60% chance that instructions beyond the fifth
branch are along the correct dynamic execution path (an 85%
accuracy Yields less than 45% chance).

A multiscalar processor can speculate across many
more than five branches, while still having a very high proba-
bility of following the correct dynamic path. In essence,
such behavior may be provided by only selectively predicting
branches. A multiscalar processor breaks the sequential
instruction stream into tasks. Although the tasks may contain
internal branches, the sequencer only needs to predict the
branches that separate tasks. The branches contained within
a task do not have to be predicted (unless they are predicted
separately within the processing unit).

In the example of Figure 3, branches in the outer loop
delineate the tasks and are predicted (with high accuracy).
No branches within the linked list search have to be
predicted. In fact, the individual branches that are part of the
process of traversing the linked list would likely be predicted
not taken because a symbol only matches one element of the
list. Nevertheless, the branch for the match will eventually
be taken. Suppose we encounter an average of 20 branches
(match tests) in traversing the linked list, the execution of an
8-unit multiscalar processor might span 160 conditional
branches, yet still be following the correct dynamic path.

The conventional approach, which must sequentially
predict all branches as it proceeds, is practically guaranteed
to predict wrong eventually (and will never have instructions
from more than one list search in progress simultaneously).
The multiscalar approach, on the other hand, may overcome

this limitation. The ability of a multiscalar processor to
selectively bypass branches possibly obviates the need for
techniques such as guarded execution, whose net result is
also avoiding the prediction of ‘‘bad’’ branches (albeit non-
loop branches), but at the expense of executing extra instruc-
tions [7,9, 10].

A wide window of pending instructions requires the com-
plexity of concurrently monitoring the issue state of all
individual instructionsin thiswindow.

In general, instructions from a wide window are selected for
execution in parallel and often out-of-order with respect to
the sequential program. In a multiscalar implementation, the
window can be very wide, yet at any given time only a few
instructions need to be inspected for the ability to issue (as
few as one for each processing unit). The boundaries of the
window of pending instructions can be identified among the
active tasks as the first instruction being considered for issue
at the head and the last instruction at the tail. As a task may
contain a hundred or more dynamic instructions (consider the
linked list example in Figure 3), the effective window size
can be many hundreds of instructions.

To issue n instructions simultaneously, there must be
logic of n? complexity to perform dependence cross-
checksamong the instructions.

That is, issue complexity grows as n? to support n-way issue.
In a superscalar processor, this observation constrains the
capacity of the issue logic. In a multiscalar processor,
though, issue logic is distributed to simultaneously fetch and
execute multiple instruction streams. Each processing unit
issues its instructions in an independent manner. The com-
plexity only consists of multiple copies of relatively simple
low-dimension scalar issue logic. The sequencer logic does
not have to examine individual instructions as is typically the
case in the superscalar approach.

All loads and stores must be identified, and the refer-
enced addresses must be computed, before memory
accesses can bere-ordered.

In a conventional implementation, loads and stores are given
sequence numbers (or are kept in original sequence) and
maintained in a buffer along with the address of the associ-
ated memory access. If a load is to be issued, the buffer is
checked to ensure that no earlier store to the same address or
an unresolved address is pending. If a store is to be issued,
the buffer is checked to ensure that no earlier load or store to
the same address or an unresolved address is pending. In a
multiscalar implementation, loads and stores may be issued
independently without knowledge of loads and stores in
predecessor or successor tasks.

4.2. Other Paradigms

The superscalar and VLIW approaches, for the most
part, follow the conventional wisdom outlined above. A typ-
ical superscalar processor fetches the stream of instructions,
examining all instructions as it proceeds (perhaps multiple
instructions are examined at once, but all are examined).
Generally, this examination is done to extract and process
branch instructions, to identify instruction types so that they
may be routed to the proper instruction buffers or reservation
stations, and to do some processing to alleviate data depen-
dences, e.g., register renaming [8, 11]. A typical VLIW pro-
cessor relies on the compiler to perform statically these same

functions performed by the superscalar processor dynami-
cally.

In the superscalar approach, it is possible, to generate
a fairly accurate window that may be a few branches deep
(using a sophisticated dynamic branch predictor), because
run-time information is available. Moreover, it is possible to
generate a very flexible instruction schedule. For example, it
may be possible to allow a load in a callee function to exe-
cute in parallel with a store from a caller function. Neverthe-
less, a superscalar processor has no advance knowledge of
the program CFG; it must discover the CFG as it decodes
branches. This lack of vision regarding “‘what lies ahead’’
and the need to predict every branch limits its ability to
create as large or as accurate a window as is possible. More-
over, to extract parallelism from the window requires
predominantly centralized resources, including much associ-
ative logic, which can be difficult to engineer as the level of
ILP increases.

In the VLIW approach, the resulting window may not
be very large or may contain inaccuracies arising from static
branch prediction, since run-time information is not available
to the compiler. Due to this lack of run-time information and
the presence of inherent ‘‘boundaries’ in the program, the
ability to move operations in a VLIW processor may be hin-
dered. For example, it may not be possible to provide a static
guarantee to allow a load operation in a callee function to
execute in parallel with a store operation from a caller func-
tion (especially if the callee function is determined dynami-
cally). Furthermore, a VLIW implementation requires a
large storage name-space, multiported register files, exten-
sive crosshar interconnects, and stalls if the run-time situa-
tion is different from the situation assumed when a code
schedule was generated (for example, a cache miss at run-
time). Moreover, going from one generation to another may
require the problematic re-engineering of program binaries.

In many ways a multiscalar processor is similar to a
multiprocessor with very low scheduling overhead*. (Both
are capable of dispatching large blocks of parallel code.)
However, there is a major difference. Whereas a multipro-
cessor requires a compiler to divide a program into tasks
where all dependence relations between tasks are known (or
are conservatively provided for) [2], a multiscalar processor
requires no such knowledge of control and data indepen-
dence. If a compiler can divide a program into tasks that are
guaranteed to be independent (for example iterations of a
vectorizable loop), of course a multiscalar processor can exe-
cute them in parallel. However, the strength in the multis-
calar approach lies in executing tasks that are very likely
independent or where dependence is relatively low (and
therefore ILP exists), but in the cases for which this informa-
tion cannot be determined statically (such as the code of

4 When compared to a multiprocessor with a low

synchronization/scheduling overhead, it is worth noting that the
name-space used to synchronize the various units in multiscalar is a
common register name-space -- the same register name-space that is
used for all computations. In a multiprocessor, we would need
separate name-spaces (private registers) for local computation, and
(shared registers or main memory) for shared communication, with
(possibly explicit) movement of values from one name-space to
another. This movement adds overhead.

Figure 3).

A multiprocessor with low scheduling overhead, as
could be achieved with multiple processors on a chip with a
shared cache, is still a multiprocessor. The fundamental
automatic parallelization problem is no different from the
one computer scientists have struggled with for many years.
It may increase the amount of parallelism over conventional
parallel processors by differences in scale rather than differ-
ences in kind. That is, the lower communication overhead
may make some small pieces of code efficient for multipro-
cessing in more instances than are possible in a conventional
multiprocessor. However, new kinds of parallelism are no
easier to discover.

A multiscalar processor should also not be confused
with a multithreaded processor. In a multithreaded proces-
sor, there are multiple threads, or loci of control, which are
control independent and (typically) data independent. In
contrast, the different “‘threads’” executing on a multiscalar
processor are related as different parts of a sequential walk
through the same program, and are not control and data
independent.

5. Performance Evaluation

5.1. Methodology

All of the results in this paper have been collected on
a simulator that faithfully represents a multiscalar processor.
The simulator accepts annotated big endian MIPS instruction
set binaries (without architected delay slots of any kind) pro-
duced by the multiscalar compiler, a modified version of
GCC 2.5.8. In order to provide results which reflect reality
with as much accuracy as possible, the simulator performs all
of the operations of a multiscalar processor and executes all
of the program code, except system calls, on a cycle-by-cycle
basis. (System calls are handled by trapping to the OS of the
simulation host.)

The pipeline structure of a processing unit is a tradi-
tional 5 stage pipeline (IF/ID/EX/MEM/WB) which can be
configured with in-order/out-of-order and 1-way/2-way issue
characteristics. Instructions complete out-of-order and are
serviced by a collection of pipelined functional units (1 or 2
simple integer FU, 1 complex integer FU, 1 floating point
FU, 1 branch FU, and 1 memory FU) according to the class
of the particular instruction with the latencies indicated in
Table 1. The unidirectional ring connecting a multiscalar
configuration of the processing units imposes a cycle for
communication latency between units and matches the ring

Integer Latency || Float Latency
Add/Sub 1 SP Add/Sub 2
Shift/Logic 1 SP Multiply 4
Multiply 4 SP Divide 12
Divide 12 DP Add/Sub 2
Mem Store 1 DP Multiply 5
Mem Load 2 DP Divide 18
Branch 1

Table 1: Functional Unit Latencies.

width to the issue width of the individual units.

All memory requests are handled by a single 4-word
split transaction memory bus. Each memory access requires
a 10 cycle access latency for the first 4 words and 1 cycle for
each additional 4 words. Both loads and stores are non-
blocking. In addition, each processing unit is configured
with 32 kbytes of direct mapped instruction cache in 64 byte
blocks. (An instruction cache access returns 4 words in a hit
time of 1 cycle with an addition penalty of 10+3 cycles, plus
any bus contention, on a miss.) A crossbar interconnects the
units to twice as many interleaved data banks. Each data
bank is configured as 8 kbytes of direct mapped data cache in
64 byte blocks with a 256 entry address resolution buffer, for
a total of 64 kbytes and 128 kbytes of banked data storage for
4-unit and 8-unit multiscalar processors respectively. (A
data cache access returns 1 word in a hit time of 2 cycles and
1 cycle for multiscalar and scalar processors, respectively,
with an additional penalty of 10+3 cycles, plus any bus con-
tention, on a miss.)

The sequencer maintains a 1024 entry direct mapped
cache of task descriptors. The control flow prediction of the
sequencer uses a PAs configuration [12] with 4 targets per
prediction and 6 outcome histories. The prediction storage is
composed of a first level history table that contains 64 entries
of 12 bits each (2 bits for each outcome due to 4 targets) and
a set of second level pattern tables that contain 4096 entries
of 3 bits each (1 bit target taken/not taken and 2 bits target
number). The control flow prediction is supplemented by a
64 entry return address stack.

5.2. Benchmarks

We used the following programs as benchmarks (with
inputs other than standard and/or modifications indicated in
parentheses): compress, egntott, espresso (ti.in), gcc
(integrate.i), sc (loadal), and xlisp (6 queens) from the
SPECIint92 suite, tomcatv (N=129) from the SPECfp92 suite,
wc from the GNU textutils1.9 and cmp from the GNU diffu-
tils2.6 (two Unix utilities used as benchmarks by the
IMPACT group [6], with inputs provided by them), as well
as the example from Figure 3 (with an input file of 16 tokens,
each appearing 450 times in the file).

Instruction

Program Count Percent

Scalar Multiscalar | Increase
Compress 71.04M 81.21M 14.3%
Eqgntott 1077.50M 1237.73M 14.9%
Espresso 526.50M 615.95M 17.0%
Gce 66.48M 75.31M 13.3%
Sc 409.06M 460.79M 12.6%
Xlisp 46.61M 54.34M 16.6%
Tomcatv 582.22M 590.66M 1.4%
Cmp 0.98M 1.09M 10.9%
Wc 1.22M 1.43M 17.3%
Example 1.05M 1.09M 4.2%

Table 2: Benchmark Instruction Counts.

Table 2 presents the dynamic instruction counts for
both scalar and multiscalar execution. (We have only one
version of a multiscalar program; the same multiscalar binary
is used for all the multiscalar configurations in our experi-
ments.) The extra instructions in a multiscalar program serve
to ensure correct execution (such as the use of release
instructions) or to enhance performance (such as the creation
of local copies of loop induction variables and validating
prediction). At present, these instructions unavoidably
increase the overall instruction count.

5.3. Results

In Tables 3 and 4 we present the instructions per cycle
(IPC) for a scalar execution, the speedups (over the
corresponding scalar execution) for 4-unit and 8-unit multis-
calar configurations, and the task prediction accuracies. In
each case, we report results of the entire execution of the
benchmark, not just isolated parts. The results of Table 3
reflect the performance for processing units with in-order 1-
way or 2-way issue. Similarly, the results of the Table 4
reflect the performance for processing units with out-of-order
1-way or 2-way issue. The speedups are for a multiscalar
processor compared to a scalar processor, in which both use
identical processing units. From the data presented in Tables
2, 3, and 4, it is possible to determine the cycle counts in
each case. (For example, with 2-way, out-of-order issue pro-
cessing units, a scalar processor takes 817,845 cycles to exe-
cute Example, whereas an 8-unit multiscalar processor takes
228,771 cycles.)

In interpreting the results, it is useful to keep a few
points in mind. First, Amdahl’s law: achieving infinite
speedup in only 50% of the code speeds up total performance
by only a factor of 2. Second, the IPC of our base scalar
configurations is fairly high due to our use of aggressive pro-
cessing units. Third, we have made no attempt, at this point,
to schedule the multiscalar code to tolerate the additional
cycle of latency it experiences (as compared to a scalar
configuration) for cache hits. Fourth, we have not spent
sufficient effort in reducing the additional instructions
encountered in multiscalar execution. Finally, we do not
give the multiscalar code any “‘unfair’” optimization advan-
tages; any optimizations such as loop unrolling are made on
both scalar and multiscalar code.

In compress all time is spent in a single (big) loop,
which contains a complex flow of control within. This loop
is bound by a recurrence (getting the index into the hash
table) that results in a long critical path through the entire
program. The problem is further aggravated by the huge size
of the hash table, which results in a high rate of cache misses.

Most (85%) of the instructions in egntott are in the
cmppt function, which is dominated by a loop. The compiler
automatically encompasses the entire loop body into a task,
allowing multiple iterations of the loop to execute in parallel.

The top function in espresso is massive_count (37%
of instructions). The massive_count function has two main
loops. In both cases, the loop body is a task, allowing the
multiple iterations to run in parallel. In the first loop, each
iteration executes a variable number of instructions (cycles
are lost due to load balance). In the second loop (which con-
tains a nested loop), an iteration of outer loop includes all the
iterations of the inner loop (in this situation, the task

1-Way Issue Units 2-Way Issue Units
Program Scalar Multiscalar Scalar Multiscalar

4-Unit 8-Unit 4-Unit 8-Unit

IPC Speedup Pred Speedup Pred IPC Speedup Pred Speedup Pred
Compress 0.69 1.17 86.8% 1.50 86.1% 0.87 1.04 86.8% 1.34 86.4%
Eqgntott 0.83 2.05 94.8% 291 94.6% 1.10 1.82 94.8% 2.58 94.6%
Espresso 0.85 1.34 85.9% 1.59 85.9% 111 1.22 85.3% 141 85.2%
Gcee 0.81 1.02 81.2% 1.08 80.9% 1.04 0.92 81.2% 0.98 80.9%
Sc 0.75 1.36 90.5% 1.68 90.0% 0.94 1.28 90.0% 1.56 89.5%
Xlisp 0.80 0.91 80.6% 0.94 79.5% 1.03 0.86 80.0% 0.88 78.7%
Tomcatv 0.80 3.00 99.2% 4.65 99.2% 0.97 271 99.2% 3.96 99.2%
Cmp 0.95 3.23 99.4% 6.24 99.4% 1.32 3.02 99.4% 5.82 99.4%
Wec 0.89 2.37 99.9% 4.33 99.9% 1.09 2.36 99.9% 4.27 99.9%
Example 0.79 2.79 99.9% 3.96 99.9% 1.07 2.43 99.9% 3.47 99.9%
Table 3: In-Order Issue Processing Units.

1-Way Issue Units 2-Way Issue Units
Program Scalar Multiscalar Scalar Multiscalar

4-Unit 8-Unit 4-Unit 8-Unit

IPC Speedup Pred Speedup Pred IPC Speedup Pred Speedup Pred

Compress 0.72 1.23 86.7% 1.56 86.0% 0.94 1.07 86.7% 1.33 86.3%
Eqgntott 0.84 2.23 94.8% 3.35 94.6% 1.21 1.79 94.8% 2.64 94.5%
Espresso 0.88 1.47 85.9% 1.73 85.8% 131 1.12 85.3% 1.25 85.4%
Gcee 0.83 1.06 81.1% 1.13 80.6% 1.15 0.91 81.1% 0.95 80.6%
Sc 0.80 1.42 90.5% 1.75 90.0% 1.10 1.24 90.2% 1.50 90.2%
Xlisp 0.82 0.95 75.6% 1.01 77.1% 1.12 0.85 74.6% 0.90 76.5%
Tomcatv 0.96 2.92 99.2% 4.17 99.2% 1.43 2.16 99.2% 2.93 99.2%
Cmp 0.95 3.24 99.2% 6.28 99.1% 1.68 2.76 99.2% 5.30 99.2%
We 0.89 2.37 99.9% 4.34 99.9% 1.13 2.34 99.9% 4.26 99.9%
Example 0.86 3.27 99.9% 4.86 99.9% 1.28 241 99.9% 3.57 99.9%

Table 4: Out-Of-Order Issue Processing Units.

partitioning needed a manual hint to select this granularity).

Both gcc and xlisp distribute execution time uniformly
across a great deal of code. These are also the programs that
we have, to date, spent the least amount of time analyzing.
In both these cases, for the task partitioning that we use
currently, squashes (both prediction and memory order)
result in near-sequential execution of the important tasks.
Accordingly, the overheads in our multiscalar execution
(extra instructions and extra cache hit latency) result in a
slow down in some cases. (Incidentally, the instruction
count is slightly lower than what is typically observed
because we unroll the memset and memcpy functions.) For
gcc our experience to date suggests that parallelism, which
may be exploited by multiscalar, exists; we are less confident
about xlisp at this point.

In sc, the dominant user routine is RealEvalAll,
though it only accounts for less than 12% of the total instruc-
tions. RealEvalAll contains a two-level nested loop that
makes a call to RealEvalOne for appropriate cells of the
spreadsheet. RealEval One further calls eval which is a recur-
sive function to evaluate a cell. The body of the inner loop
of RealEvalAll is a task with the call to RealEvalOne
suppressed manually. The loop in RealEvalAll visits every
cell of the spreadsheet. If a cell is not empty, RealEvalOne is

called to evaluate it, else no action is taken at the cell. Since
RealEvalOne executes for hundreds of cycles, the load
imbalance between the work at each cell is enormous.
Accordingly, we restructured the RealEvalOne loop to build
a work list of the cells to be evaluated and to call
Real Eval One for each of the cells on the work list.

For tomcatv nearly all time is spent in a loop whose
iterations are independent. Accordingly, we achieve good
speedup for 4-unit and 8-unit multiscalar processors. The
higher-issue configurations are stymied because of the con-
tention on the cache to memory bus.

The programs cmp and wc are straightforward, with
each spending almost all its time in a loop. The loops, how-
ever, contain an inner loop (the loop in wc also contains a
switch statement). In these cases, the performance loss may
be attributed mainly to cycles lost due to branches and loads
inside each task (intra-task dependences).

Our example spends 80% of its time in the code
shown in Figure 3, performing the symbol fetch, match, and
process or add sequence. The remaining time is spent in
fetching the data from the input file into the buffer. Since the
iterations of the outer loop are mostly independent (dynami-
cally), we attain excellent speedups. Interestingly, other
known ILP paradigms such as superscalar and VLIW are

unlikely to extract any meaningful parallelism, in an efficient
manner, for this example.

6. Summary and Conclusions

This paper presented the multiscalar processing para-
digm, a new paradigm for exploiting fine-grain, or
instruction-level parallelism. A multiscalar processor uses a
combination of hardware and software to extract ILP from
ordinary programs. It does so by dividing the program con-
trol flow graph (CFG) into tasks, and stepping through the
CFG speculatively, taking large steps, a task at a time,
without pausing to inspect the contents of a task. The tasks
are distributed to a collection of processing units, each of
which fetches and executes the instructions in its task. Col-
lectively, this processor complex uses multiple program
counters to sequence through different parts of the program
CFG simultaneously, resulting in multiple instructions being
executed in a cycle.

We described the philosophy of the multiscalar para-
digm, the structure of multiscalar programs, and the
hardware architecture of a multiscalar processor. We also
discussed several issues related to the performance of a mul-
tiscalar processor, and compared the multiscalar paradigm
with other ILP processing paradigms. Finally, we carried out
a performance evaluation of several —multiscalar
configurations on an ensemble of well-known benchmarks.

The performance results presented in this paper, in our
opinion, only hint at the possibilities of the multiscalar
approach. As we investigate the dynamics of multiscalar
execution, we continue to evolve the compiler and to better
understand its interaction with the hardware. At present, we
optimistically view performance impediments as problems
for which we have not yet developed solutions. Our expecta-
tion is that with improved software support, and more
streamlined hardware, multiscalar processors will be able to
extract levels of ILP that are far beyond the capabilities of
existing paradigms. (We plan to make updated results avail-
able on the multiscalar WWW page: URL
http://www.cs.wisc.edu/"mscalar.)

Acknowledgements

This work was supported in part by NSF grant CCR-
9303030 and by ONR grant N00014-93-1-0465. We would
like to thank Jim Smith for his contributions to the multis-
calar project in general, and this paper in particular.

References

[1] S. E. Breach, T. N. Vijaykumar, and G. S. Sohi, ““The
Anatomy of the Register File in a Multiscalar Proces-
sor,”” Proc. MICRO-27, pp. 181-190, December
1994,

[2] D. K. Chen, H. M. Su, and P. C. Yew, ““The Impact
of Synchronization and Granularity on Parallel Sys-
tems,”” Proc. 17th Annual International Symposium
on Computer Architecture, pp. 239-248, May 1990.

[3] M. Franklin and G. S. Sohi, ““ARB: A Hardware
Mechanism for Dynamic Memory Disambiguation,”’
submitted to |EEE Transactions on Computers.

[4]

[5]

(6]

[7]

(8]
9]

[10]

[11]

[12]

M. Franklin and G. S. Sohi, ‘“The Expandable Split
Window Paradigm for Exploiting Fine-Grain Paral-
lelism,”” in Proc. 19th Annual Symposium on Com-
puter Architecture, Queensland, Australia, pp. 58-67,
May 1992.

M. Franklin, ‘“The Multiscalar Architecture,”” Ph. D.
Thesis, Computer Sciences Technical Report #1196,
University of Wisconsin-Madison, Madison, WI
53706, November 1993.

R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C.
Gyllenhaal, and W. W. Hwu, “*Superblock Formation
Using Static Program Analysis,”” Proc. MICRO-26,
pp. 247-255, December 1993.

P. Y.-T. Hsu and E. S. Davidson, ‘“Highly Con-
current Scalar Processing,”” Proc. 13th Annual Sym-
posium on Computer Architecture, pp. 386-395, June
1986.

R. M. Keller, ““Look-Ahead Processors,”” ACM Com-
puting Surveys, vol. 7, pp. 66-72, December 1975.

S. A. Mahlke, D. C. Liu, W. Y. Chen, R. E. Hank,
and R. A. Bringmann, ‘‘Effective Compiler Support
for Predicated Execution Using the Hyperblock,”” in
MICRO-25, Portland, Oregon, pp. 45-54, December
1992,

D. N. Pnevmatikatos and G. S. Sohi, ‘‘Guarded Exe-
cution and Branch Prediction in Dynamic ILP Proces-
sors,”” in Proc. 21th Annual International Symposium
on Computer Architecture, Chicago, Illinois, pp.
120-129, April 1994.

G. S. Tjaden and M. J. Flynn, “‘Detection and Parallel
Execution of Independent Instructions,”” |IEEE Tran-
sactions on Computers, vol. C-19, pp. 889-895, Oc-
tober 1970.

T.-Y.Yehand Y. N. Patt, ““A Comparison of Dynam-
ic Branch Predictors that Use Two Levels of Branch
History,”” in Proc. 20th Annual International Sympo-
sium on Computer Architecture, San Diego, Califor-
nia, pp. 257-266, May 1993.

