SPEC CPU2006 Benchmark Descriptions

Descriptions written by the SPEC CPU Subcommittee and by the original program authors [1].
Edited by John L. Henning,
Secretary, SPEC CPU Subcommittee, and Performance Engineer, Sun Microsystems.
Contact john.henning@acm.org

Introduction

On August 24, 2006, the Standard Performance Evalua-
tion Corporation (SPEC) announced CPU2006 [2], which re-
places CPU2000. The SPEC CPU benchmarks are widely used
in both industry and academia [3].

The new suite is much larger than the previous, and will
exercise new corners of CPUs, memory systems, and compil-
ers — especially C++ compilers. Where CPU2000 had only 1
benchmark in C++, the new suite has 7, including one with 2
million lines of C++ code. As in previous CPU suites, Fortran
and C are also well represented.

Since its beginning, SPEC has claimed the motto that

“An ounce of honest data
is worth a pound of marketing hype”.

To help keep the benchmarking data honest, fair, and rele-
vant, SPEC CPU draws benchmarks from real life applica-

tions, rather than using artificial loop kernels or synthetic
benchmarks. Therefore, the most important parts of the new
suite are the benchmarks themselves, which are described on
the pages that follow. In a future issue of Computer Architec-
ture News, information will be provided about other aspects of
the new suite, including additional technical detail regarding
benchmark behavior and profiles.

References:

[1] Program authors are listed in the descriptions below,
which are adapted from longer versions posted at
www.spec.org/cpu2006/Docs/. The SPEC project leaders
are listed in credits.html at the same location.

[2] SPEC’s press announcement may be
www.spec.org/cpu2006/press/release.html

[3] SPEC’s website has over 6000 published results for
CPU2000, at www.spec.org/cpu2000/results. Google
reports 270,000 hits for the phrase “SPEC CPU2000” as
of September 2006.

found at

The benchmarks are described in order by category - first the integer benchmarks, then the floating point benchmarks.

Part 1: Integer Benchmarks
e 400.perlbench °
401.bzip2
403.gcc
429.mcf
445.gobmk
456.hmmer
458.sjeng
462.libquantum
464.h264ref
471.omnetpp
473.astar
483 .xalancbmk

ACM SIGARCH Computer Architecture News

Part 2: Floating Point Benchmarks

410.bwaves
416.gamess
433.milc
434.zeusmp
435.gromacs
436.cactusADM
437 .leslie3d

444 namd

447 .dealll
450.soplex
453.povray
454.calculix
459.GemsFDTD
465 .tonto
470.1bm
481.wrf
482.sphinx3
999.specrand

Vol. 34, No. 4, September 2006

Part 1: Integer Benchmarks

400.perlbench

Authors: Larry Wall, et. al.
General Category: Programming language

Description: 400.perlbench is a cut-down version of Perl
v5.8.7, the popular scripting language. SPEC's version of Perl
has had most of OS-specific features removed. In addition to
the core Perl interpreter, several third-party modules are used:

e SpamAssassin v2.61
Digest-MD5 v2.33
HTML-Parser v3.35
MHonArc v2.6.8
10-stringy v1.205
MailTools v1.60

e TimeDate v1.16

Sources for all of the freely-available components used

in 400.perlbench can be found on the distribution media in the
original.src directory.

Input: The reference workload for 400.perlbench consists of
three scripts:

1. The primary component of the workload is the Open
Source spam checking software SpamAssassin. SpamAssassin
is used to score a couple of known corpora of both spam and
ham (non-spam), as well as a sampling of mail generated from
a set of random components. SpamAssassin has been heavily
patched to avoid doing file I/O, and does not use the Bayesian
filtering.

2. Another component is the popular freeware email-to-
HTML converter MHonArc. Email messages are generated
randomly and converted to HTML. In addition to MHonArc,
which was lightly patched to avoid file I/O, this component
also uses several standard modules from the CPAN
(Comprehensive Perl Archive Network).

3. The third script in the reference workload (which also
uses the mail generator for convienience) excercises a slightly-
modified version of the 'specdiff' script, which is a part of the
CPU2006 tool suite.

The training workload is similar, but not identical, to the
reference workload from CPU2000.

The test workload consists of the non-system-specific
parts of the actual Perl 5.8.7 test harness.

ACM SIGARCH Computer Architecture News

QOutput: In the case of the mail-based benchmarks, a line
with salient characteristics (number of header lines, number of
body lines, etc) is output for each message generated. During
processing, MD5 hashes of the contents of output "files" (in
memory) are computed and output. For SpamAssassin, the
message's score and the rules that it triggered are also output.

Programming Language: ANSI C

Known Portability Issues: There are some known aliasing
issues. The internal data structures that represent Perl's
variables are accessed in such as a way as to violate ANSI
aliasing rules. Compilation with optimizations that rely on
strict compliance to ANSI C aliasing rules will most likely
produce binaries that will not validate.

References:

[1] Perl Mongers: http://www.perl.org/

[2] O'Reilly's Perl Pages: http://www.perl.com/

[3] The Comprehensive Perl Archive
http://www.cpan.org/

[4] SpamAssassin: http://spamassassin.apache.org/

[5] MHonArc: http://www.mhonarc.org/

Network:

Vol. 34, No. 4, September 2006

401 .bZipZ (Integer benchmarks cont’d)

Author: Julian Seward
General Category: Compression

Description: 401.bzip2 is based on Julian Seward's bzip2
version 1.0.3.

The only difference between bzip2 1.0.3 and 401.bzip?2 is
that SPEC's version of bzip2 performs no file I/O other than
reading the input. All compression and decompression
happens entirely in memory. This is to help isolate the work
done to only the CPU and memory subsystem.

Input: 401.bzip2's reference workload has six components:
two small JPEG images, a program binary, some program
source code in a tar file, an HTML file, and a "combined" file,
which is representative of an archive that contains both highly
compressible and not very compressible files.

Each input set is compressed and decompressed at three
different blocking factors ("compression levels"), with the end
result of the process being compared to the original data after
each decompression step.

Output: The output files provide a brief outline of what the
benchmark is doing as it runs. Output sizes for each
compression and decompression are printed to facilitate
validation, and the results of decompression are compared
with the input data to ensure that they match.

Programming Language: ANSI C
Known Portability Issues: None

References:

[1] Michael Burrows and D. J. Wheeler: "A block-sorting
lossless data compression algorithm" 10th May 1994.
Digital SRC Research Report 124.
ftp://ftp.digital.com/pub/DEC/SRC/research-reports/SRC-
124.ps.gz

[2] Daniel S. Hirschberg and Debra A. LeLewer, "Efficient
Decoding of Prefix Codes", Communications of the
ACM, April 1990, Vol 33, # 4.

[3] David J. Wheeler, Program bred3.c and accompanying
document bred3.ps.
ftp://ftp.cl.cam.ac.uk/users/djw3/

[4] Jon L. Bentley and Robert Sedgewick, "Fast Algorithms
for Sorting and Searching Strings", Available from
Sedgewick's web page,
http://www.cs.princeton.edu/~rs/

[5] Peter Fenwick, "Block Sorting Text Compression -- Final
Report", The University of Auckland, Department of
Computer Science Report No. 130, April 1996.
ftp://ftp.cs.auckland.ac.nz/pub/staff/peter-
f/TechRep130.ps

ACM SIGARCH Computer Architecture News

403.gCC (Integer benchmarks cont’d)

Author: Richard Stallman and a large cast of helpers [1].
General Category: C Language optimizing compiler

Description: 403.gcc is based on gcc Version 3.2. It
generates code for an AMD Opteron processor. The
benchmark runs as a compiler with many of its optimization
flags enabled.

403.gcc has had its inlining heuristics altered slightly, so
as to inline more code than would be typical on a Unix system
in 2002. It is expected that this effect will be more typical of
compiler usage in 2006. This was done so that 403.gcc would
spend more time analyzing its source code inputs, and use
more memory. Without this effect, 403.gcc would have done
less analysis, and needed more input workloads to achieve the
run times required for CPU2006.

Input: There are 9 input workloads in 403.gcc. These files

are preprocessed C code (.i files):

e c¢p-decl.i and expr.i come from the source files of 176.gcc
from CPU2000.

e 166.1 is made by concatenating the Fortran source files of
a SPECint2000 candidate benchmark, then using the f2¢
translator to produce C code, and then pre-processing.

e 200.i comes via the same method from a previous version
of the SPEC{p2000 benchmark 200.sixtrack.

e scilab.i comes via the same method from a version of the
Scilab program.

e Expr2.i comes from the source of 403.gcc, as does c-
typeck.i.

e 9231 comes from fold-const.c from 403.gcc, and s04.i
comes from sched-deps.c of 403.gcc

Output: All output files are x86-64 assembly code files.
Programming Language: C

Known Portability Issues:

e Some of the optimizations 403.gcc performs require
constant propagation of floating point constants. These
form an insignificant amount of computation time, yet
may depend on IEEE floating point format to produce a
correct result.

e 403.gcc is not an ANSI C program. It uses GNU
extensions.

e The initial port of 403.gcc was to a 64 bit system. It has
been successfully ported by SPEC to many 32-bit UNIX
implementations.

References:
[1] http://gcc.gnu.org/onlinedocs/gec/Contributors.html .
[2] See the GCC home page at http://gcc.gnu.org

Vol. 34, No. 4, September 2006

429.mcf (Integer benchmarks cont’d)

Author: Andreas Lobel; SPEC Project Leader: Reinhold We-
icker

General Category: Combinatorial optimization / Single-
depot vehicle scheduling

Description: 429.mcf is derived from MCF, a program used
for single-depot vehicle scheduling in public mass
transportation.

The program is designed for the solution of single-depot
vehicle scheduling problems planning transportation. It
considers one single depot and a homogeneous vehicle fleet.
Based on a line plan and service frequencies, so-called
timetabled trips with fixed departure/arrival locations and
times are derived. Each of these timetabled trips has to be
serviced by exactly one vehicle. The links between these trips
are called dead-head trips. In addition, there are pull-out and
pull-in trips for leaving and entering the depot.

Cost coefficients are given for all dead-head, pull-out,
and pull-in trips. It is the task to schedule all timetabled trips
to so-called blocks such that the number of necessary vehicles
is as small as possible and, subordinate, the operational costs
among all minimal fleet solutions are minimized.

For the considered single-depot case, the problem can be
formulated as a large-scale minimum-cost flow problem,
solved with a network simplex algorithm accelerated with a
column generation.

The network simplex algorithm is a specialized version
of the well known simplex algorithm for network flow
problems. The linear algebra of the general algorithm is
replaced by simple network operations such as finding cycles
or modifying spanning trees that can be performed very
quickly. The main work of our network simplex
implementation is pointer and integer arithmetic.

In the transition from 181.mcf (CPU2000) to 429.mcf
(CPU2006), new inputs were defined for test, train, and ref,
with the goal of longer execution times. The heap data size,
and with it the overall memory footprint, increased according-
ly. Most of the source code was not changed, but. several type
definitions were changed by the author:

e Whenever possible, long typed attributes of struct node
and struct arc are replaced by 32 bit integer, for example
if used as boolean type. Pointers remain unaffected and
map to 32 or 64 bit long, depending on the compilation
model, to ensure compatibility to 64 bit systems.

e To reduce cache misses and accelerate program
performance somewhat, the elements of struct node and
struct arc, respectively, are rearranged according to the
proposals made in [1].

Input: The input file contains: the number of timetabled and
dead-head trips; for each timetabled trip its starting and ending
time; for each dead-head trip its starting and ending timetabled
trip and its cost.

ACM SIGARCH Computer Architecture News

Worst case execution time is pseudo-polynomial in the
number timetabled and dead-head trips and in the amount of
the maximal cost coefficient. The expected execution time,
however, is in the order of a low-order polynomial.

Memory Requirements: 429.mcf requires about 860 and
1700 megabyte for a 32 and a 64 bit data model, respectively.

Output: The benchmark writes log information, a checksum,
and output values describing an optimal schedule.

Programming Language: ANSI C, mathematical library
(libm) required.

Known Portability Issues: In the SPEC version,
-DWANT STDC PROTO is set to require ANSI C prototyp-
ing, for reasons of compatibility and standards.

References:

[1] Marty Itzkowitz, Brian Wylie, Christopher Aoki, and Ni-
colai Kosche, "Memory Profiling using Hardware
Counters"
www.sc-conference.org/sc2003/paperpdfs/pap182.pdf

[2] Background on the vehicle scheduling problem can be
found in the author's Ph.D. thesis "Optimal Vehicle
scheduling in public transit", www.zib.de/loebel or at
ftp://ftp.zib.de/pub/zib-
publications/books/Loebel.disser.ps

[3] The work horse in the benchmark 429.mcf is the code
MCF Version 1.2, which is free for academic use at
www.zib.de/Optimization/Software/Mcf/ Compared with
the original and the commercial versions, the benchmark
version has simplified I/O. The main algorithmic part,
however, has been retained.

[4] An excellent text book about the network simplex
algorithm and network flow in general is Ahuja,
Magnanti, and Orlin: "Network Flows: Theory,
Algorithms, and Applications", Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1993.

[5] MCEF had originally been developed for application in the
public transportation systems of Hamburg and Berlin
(BVG). For BVG, bus scheduling was optimized in 1998
on the basis of MCF; BVG also owns usage rights to the
software that has been integrated into their planning
system BERTA.

[6] The MCF method for vehicle scheduling later has been
integrated, into the vehicle and personel planning system
MICROBUS. This system in now marketed by IVU
Traffic Technologies AG (http://www.ivu.de); the bus
service divisions of the German and the Austrian railway
companies are among the licencees.

Vol. 34, No. 4, September 2006

445.g0bmk (Integer benchmarks cont’d)

GNU Go authors: (in chronological order of contribution)
are Man Lung Li, Wayne Iba, Daniel Bump, David Denholm,
Gunnar Farnebéck, Nils Lohner, Jerome Dumonteil, Tommy
Thorn, Nicklas Ekstrand, Inge Wallin, Thomas Traber,
Douglas Ridgway, Teun Burgers, Tanguy Urvoy, Thien-Thi
Nguyen, Heikki Levanto, Mark Vytlacil, Adriaan van Kessel,
Wolfgang Manner, Jens Yllman, Don Dailey, Mans Ullerstam,
Arend Bayer, Trevor Morris, Evan Berggren Daniel, Fernando
Portela, Paul Pogonyshev, S.P. Lee, Stephane Nicolet and
Martin Holters.

General Category: Artificial intelligence - game playing.

Description: The program plays Go and executes a set of
commands to analyze Go positions.

Input: Most input is in "SmartGo Format" (.sgf), a widely
used de facto standard representation of Go games. A typical
test involves reading in a game to a certain point, then
executing a command to analyze the position.

Output: typically an ascii description of a sequence of Go
moves.

Programming Language: C

Known Portability Issues: There are no known portability
problems remaining. The last portability problem fixed dealt
was the nonstandard assumption of signed characters.

References:
[1] www.gnu.org/software/gnugo/devel.html

ACM SIGARCH Computer Architecture News

456.hmmer (Integer benchmarks cont’d)

Author: Sean Eddy; SPEC Project Leader: Kaivalya M. Dix-
it (IBM), Alan MacKay (IBM)

General Category: Secarch a gene sequence database

Description: Profile Hidden Markov Models (profile
HMMSs) are statistical models of multiple sequence
alignments, which are used in computational biology to search
for patterns in DNA sequences.

The technique is used to do sensitive database searching,
using statistical descriptions of a sequence family's consensus.
It is used for protein sequence analysis.

Input: A database (sprot4l.dat) is used in the reference
workloads. An input workload (nph3.hmm) is used to find a
ranked list of best sorting sequences from the sprot41.dat file
using the hmmsearch function.

For test, train, and 1 of the 2 reference workloads, 3
different hmm files are used to with the hmmcalibrate function
to calibrate HMM search statistics. This function scores a
large number of synthesized random sequences from the input
file and fits an extreme value distribution (EVD) to the
histogram of those scores.

Qutput: Four output files contain a ranked list of matches.
Programming Language: C Language

Known Portability Issues: All resolved during porting it
for SPEC.

References:
[1] http://hmmer.wustl.edu

Vol. 34, No. 4, September 2006

458.Sj €Ng (integer benchmarks cont’d)

Authors: Gian-Carlo Pascutto, Vincent Diepeveen

General Category: Artificial Intelligence (game tree search
& pattern recognition)

Description: 458.sjeng is based on Sjeng 11.2, which is a
program that plays chess and several chess variants, such as
drop-chess (similar to Shogi), and 'losing' chess.

It attempts to find the best move via a combination of
alpha-beta or priority proof number tree searches, advanced
move ordering, positional evaluation and heuristic forward
pruning. Practically, it will explore the tree of variations
resulting from a given position to a given base depth,
extending interesting variations but discarding doubtful or
irrelevant ones. From this tree the optimal line of play for both
players ("principle variation") is determined, as well as a score
reflecting the balance of power between the two.

The SPEC version is an enhanced version of the free
Sjeng 11.2 program, modified to be more portable and more
accurately reflect the workload of current professional
programs.

Input: 458.sjeng's input consists of a textfile containing
alternations of a chess position in the standard Forsyth-
Edwards Notation (FEN) and the depth to which this position
should be analyzed, in half-moves (ply depth)

The SPEC reference input consists of 9 positions
belonging to various phases of the game.

Output: 458.sjeng's output consists, per position, of some
side information (textual display of the chessboard, phase of
the game, used parameters...) followed by the output from the
tree searching module as it progresses. This is formatted as:
Attained depth in half-moves (plies); Score for the player that
is to move, in equivalents of 1 pawn; Number of positions
investigated; and the optimal line of play ("principle
variation")

Programming Language: ANSI C

Known Portability Issues: Requires that "int" is at least 32
bits wide.

References:
[1] Sjeng 11.2 & Deep Sjeng: www.sjeng.org
[2] Portable Game Notation Specification
FEN/EPD):
ww.tim-mann.org/Standard

(including

ACM SIGARCH Computer Architecture News

462.libquantum (Integer benchmarks cont’d)

Author: Bjorn Butscher, Hendrik Weimer
General Category: Physics / Quantum Computing

Description: libquantum is a library for the simulation of a
quantum computer. Quantum computers are based on the
principles of quantum mechanics and can solve certain
computationally hard tasks in polynomial time.

In 1994, Peter Shor discovered a polynomial-time
algorithm for the factorization of numbers, a problem of
particular interest for cryptanalysis, as the widely used RSA
cryptosystem depends on prime factorization being a problem
only to be solvable in exponential time. An implementation of
Shor's factorization algorithm is included in libquantum.

Libquantum provides a structure for representing a
quantum register and some elementary gates. Measurements
can be used to extract information from the system.
Additionally, libquantum offers the simulation of
decoherence, the most important obstacle in building practical
quantum computers. It is thus not only possible to simulate
any quantum algorithm, but also to develop quantum error
correction algorithms. As libquantum allows to add new gates,
it can easily be extended to fit the ongoing research, e.g. it has
been deployed to analyze quantum cryptography.

Input: The benchmark program expects the number to be fac-
torized as a command-line parameter. An additional parameter
can be supplied to specify a base for the modular exponentia-
tion part of Shor's algorithm.

Output: The program gives a brief explanation on what it is
doing and the factors of the input number if the factorization
was successful.

Programming Language: ISO/IEC 9899:1999 ("C99")

Known Portability Issues: On Solaris prior to version 10,
/usr/include/complex.h is not available, You can work around
this by including -I. —lcplxsupp in your compilation flags.

References:

[1] libquantum Website: www.enyo.de/libquantum/

[2] Wikipedia article on Quantum Computer
http://en.wikipedia.org/wiki/Quantum_computer

[3] Peter W. Shor: Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer www.arxiv.org/abs/quant-ph/9508027

Vol. 34, No. 4, September 2006

464.h264ref (Integer benchmarks cont’d)

Author: Karsten Sithring [1] and many others [2] wrote the
H.264/AVC reference implementation. Tom Pycke has coordi-
nated packaging the reference version for use by SPEC.

General Category: Video compression

Description: 464.h264ref is a reference implementation of
H.264/AVC (Advanced Video Coding), the latest video
compression standard, developed by the VCEG (Video
Coding Experts Group) of the ITU [3] and the MPEG [4]
group of the ISO/IEC [5]. This standard replaces the current
MPEG-2 standard, for applications such as the next-generation
DVDs (Blu-ray and HD DVD) and video broadcasting.

464.h264ref is based on version 9.3 of the h264avc
reference implementation, modified to improve portability,
validation, and fairness. I/O and platform-specific code were
reduced. It encodes video using 2 parameter sets: (1) Basic
profile (baseline.cfg): Good compression, fast encoding. This
profile can be used for real-time encoding applications such as
video conferencing. (2)Main profile (main.cfg): Best com-
pression. This can be used in applications where no loss of
data can occur such as the next generation DVD.

Input: 2 files in (uncompressed) video data in YUV-format.:
Foreman: a standard sequence used in video compression with
120 frames at 176x144 pixels; and SSS, a sequence from a
video game, with 171 frames at 512x320 pixels

Output: Included are encode logs from foreman in both
baseline and the main profile, and sss in the main profile.

Copyrights and disclaimers: The 464.h264ref bench-
marks sources are protected by the original copyright notice
that is part of the official h264avc reference software, version
9.3 [6]. The full text of the copyright, and important disclaim-
ers, are reproduced at [7].

Programming Language: C
Known Portability Issues: None

References:

[1] http://iphome.hhi.de/suehring/tml/index.htm

[2] http://iphome.hhi.de/suehring/tml/doc/lenc/html/contribu-
tors_8h.html# details

[3] International Telecommunications Union, www.itu.int

[4] Moving Pictures Experts Group,
www.chiariglione.org/mpeg

[5] International Standardization Organization, www.iso.ch.

[6] http://iphome.hhi.de/suchring/tml/download/old jm/jm39.
zip

[7] www.spec.org/cpu2006/docs/464.h264ref. html

[8] http://en.wikipedia.org/wiki/H264

ACM SIGARCH Computer Architecture News

471.0mnetpp (Integer benchmarks cont’d)

Author: Andras Varga, Omnest Global, Inc.
General Category: Discrete Event Simulation

Description: simulation of a large Ethernet network, based
on the OMNeT++ discrete event simulation system [1], using
an ethernet model which is publicly available [2].

For the reference workload, the simulated network
models a large Ethernet campus backbone, with several
smaller LANs of various sizes hanging off each backbone
switch. It contains about 8000 computers and 900 switches
and hubs, including Gigabit Ethernet, 100Mb full duplex,
100Mb half duplex, 10Mb UTP, and 10Mb bus. The training
workload models a small LAN.

The model is accurate in that the CSMA/CD protocol of
Ethernet and the Ethernet frame are faithfully modelled. The
host model contains a traffic generator which implements a
generic request-response based protocol. (Higher layer
protocols are not modelled in detail.)

Input: The topology of the network and structure of hosts,
switches and hubs are described in NED files (the network
description language of OMNeT++.) Operation of the
Ethernet MAC, traffic generator etc. are in C++.

Request and reply lengths are configured as intuniform
(50,1400) and truncnormal (5000,5000) for the reference
input. The volume of the traffic can most easily be controlled
with the time period between sending requests; currently set in
omnetpp.ini to exponential(0.33) (that is, average 3 requests
per second) for the reference input. This already causes frames
to be dropped in some of the backbone switches, so the
network is a bit overloaded with the current settings.

Output: The model generates extensive statistics in the
omnetpp.sca file at the end of the simulation: number of
frames sent, received, dropped, etc. These are only basic
statistics; however, if all nodes were allowed to record them,
omnetpp.sca would grow to about 28 megabytes. To make the
output more reasonable in size, recording statistics is only
enabled in a few nodes.

Programming Language: C++
Known Portability Issues: None.

References:

[1] OMNeT++ Community Site: www.omnetpp.org

[2] Ethernet simulation model:
http://ctieware.eng.monash.edu.au/twiki/bin/view/Simula-
tion/EtherNet

[3] Ethernet model documentation:
http://ctieware.eng.monash.edu.au/~ctieware/ethernet-doc

Vol. 34, No. 4, September 2006

473.astar (Integer benchmarks cont’d)

Author: Lev Dymchenko

General Category: Computer games. Artificial Intelli-
gence. Path finding.

Description: 471.astar (pronounced: A-star) is derived from
a portable 2D path-finding library that is used in game's Al
This library implements three different path-finding algo-
rithms:

First is the well known A* algorithm for maps with pass-
able and non-passable terrain types.

Second is a modification of the A* path finding algo-
rithm for maps with different terrain types and different move
speed.

Third is an implementation of A* algorithm for graphs.
This is formed by map regions with neighborhood relation-
ship.

The library also includes pseudo-intellectual functions
for map region determination.

Input: The input file is a map in binary format. The program
also accepts typical map region size which is used in region-
based path finding algorithm and density for randomly created
forest-style test maps. The program also reads the number of
ways to simulate.

Output: The program outputs the number of existing ways
and the total way length to validate correctness.

Programming Language: C++
Known Portability Issues: None

References:

[1] www.gamasutra.com/features/19990212/sm_01.htm Pop-
ular article about A* algorithm.

[2] www.policyalmanac.org/games/aStarTutorial.htm a tuto-
rial on A* algorithm.

ACM SIGARCH Computer Architecture News

483.xalancbmk (Integer benchmarks cont’d)

Author: IBM Corporation, Apache Inc, plus modifications for
SPEC purposes by Christopher Cambly, Andrew Godbout,
Neil Graham, Sasha Kasapinovic, Jim Mclnnes, June Ng,
Michael Wong. Primary contact: Michael Wong

General Category: XSLT processor for transforming XML
documents into HTML, text, or other XML document types

Description: a modified version of Xalan-C++ [1], an XSLT
processor written in a portable subset of C++ . Xalan-C++
version 1.8 is a robust implementation of the W3C
Recommendations for XSL Transformations (XSLT) [2] and
the XML Path Language (XPath) [3]. It works with a
compatible release of the Xerces-C++ [4] XML parser:
Xerces-C++ version 2.5.0. The XSLT language is use to
compose XSL stylesheets. An XSL stylesheet contains
instructions for transforming XML documents from one
document type to another document type (XML, HTML, or
other). In structural terms, an XSL stylesheet specifies the
transformation of one tree of nodes (the XML input) into
another tree of nodes (the output or transformation result).

Modifications for SPEC benchmarking purposes include:
combining code to make a standalone executable, removing
compiler incompatibilities and improving standard
conformance, changing output to display intermediate values,
removing large parts of unexecuted code, and moving all the
include locations to fit better into the SPEC harness.

Input: An XML document and an XSL Stylesheet.
Output: An HTML document

Programming Language: C++

Known Portability Issues: None

References:

[1] http://xml.apache.org/xalan-c/

[2] Xalan-C++ fully implements the W3C Recommendation
16 November 1999 XSL Transformations (XSLT) Ver-
sion 1.0. http://www.w3.org/TR/xslt

[3] Xalan-C++ incorporates the XML Path Language (XPath)
Version 1.0. http://www.w3.org/TR/xpath.

[4] Xalan-C++ uses Xerces-C++ to parse XML documents
and XSL stylesheets: http://xml.apache.org/xerces-c.

[5] Xalan-C++ supports C++ extension functions
http://xml.apache.org/xalan-c/extensions.html .

Vol. 34, No. 4, September 2006

Part 2: Floating Point Benchmarks

410.bwaves

Author: Dr. Mark Kremenetsky, Silicon Graphics, Inc
General Category: Computational Fluid Dynamics

Description: 410.bwaves numerically simulates blast waves
in three dimensional transonic transient laminar viscous flow.

The initial configuration of the blast waves problem
consists of a high pressure and density region at the center of a
cubic cell of a periodic lattice, with low pressure and density
elsewhere. Periodic boundary conditions are applied to the
array of cubic cells forming an infinite network. Initially, the
high pressure volume begins to expand in the radial direction
as classical shock waves. At the same time, the expansion
waves move to fill the void at the center of the cubic cell.
When the expanding flow reaches the boundaries, it collides
with its periodic images from other cells, thus creating a
complex structure of interfering nonlinear waves. These
processes create a nonlinear damped periodic system with
energy being dissipated in time. Finally, the system will come
to an equilibrium and steady state.

The algorithm implemented is an unfactored solver for
the implicit solution of the compressible Navier-Stokes
equations using the Bi-CGstab algorithm, which solves
systems of non-symmetric linear equations iteratively.

Input: describes the grid size, flow parameters, initial
boundary condition and number of time steps. The test, train
and ref data sets differ only in grid size and number of steps.

Output: The transient nature of the flow and iterative solver
makes bwaves a difficult problem to validate. In SPEC
CPU2006 this has been addressed by comparing three
different outputs. These are: the L2 norm of dq(l.i.j.k) vector
after final time step; the residual for convergence after each
time step; and (3) the cumulative sum of iterations for
convergence for every time step

Programming Language: Fortran 77

Known Portability Issues: none

ACM SIGARCH Computer Architecture News

416.gamess (Floating point benchmarks cont’d)

Author: Gordon Research Group, lowa State University [1]
General Category: Quantum chemical computations

Description: A wide range of quantum chemical
computations are possible using GAMESS. The benchmark
416.gamess does the following computations for the reference
workload: (1) Self-consistent field (SCF) computation (type:
Restricted Hartree-Fock) of cytosine molecule using the direct
SCF method; (2) SCF computation (type: Restricted open-
shell Hartee-Fock) of water and cu2+ using the direct SCF
method; (3) SCF computation (type: Multi-configuration Self-
consisted field) of triazolium ion using the direct SCF method

Inputs and Outputs: Described in the benchmark Docs
subdirectory files INPUT.TXT, INTRO.TXT and PROG.TXT

Programming Language: Fortran

Known Portability Issues: Uses features that are either
non-standard or deleted in Fortran 95: equivalence of objects
of character type with non-character types; some formal and
actual arguments of subroutines do not have the same data
type; some arrays are accessed past the end of the defined
array size; argument array sizes defined in some subroutines
do not match the size of the actual argument passed.

The benchmark source is generated from the original
GAMESS by using the 'SEQ' (sequential) directive. So,
416.gamess can not be used for a parallel run.

References:
[1] www.msg.ameslab.gov/GAMESS/GAMESS . html

[2] GAMESS, M.W.Schmidt, K.K.Baldridge, J.A.Boatz,
S.T.Elbert, M.S.Gordon, J.J.Jensen, S.Koseki,
N.Matsunaga, K.A.Nguyen, S.Su, T.L.Windus,

M.Dupuis, J.A.Montgomery J.Comput.Chem. 14, 1347-
1363 (1993)

[3] For more references, please see REFS.TXT in the Docs/
subdirectory of the benchmark tree.

Vol. 34, No. 4, September 2006

433.milc (Floating point benchmarks cont’d)

Author: Submitted by Steven Gottlieb for the MILC
collaboration

General Category: Physics / Quantum Chromodynamics
(QCD)

Description: MILC is developed by the MIMD Lattice
Computation (MILC) collaboration for doing simulations of
four dimensional SU(3) lattice gauge theory on MIMD
parallel machines. The code is used for millions of node hours
at DOE and NSF supercomputer centers.

433.milc in SPEC CPU2006 uses the serial version of the
su3imp program, which is important and relevant because
parallel performance depends on good single processor
performance.

The program generates a gauge field, and is used in
lattice gauge theory applications involving dynamical quarks.
Lattice gauge theory involves the study of some of the
fundamental constituents of matter, namely quarks and gluons.
In this area of quantum field theory, traditional perturbative
expansions are not useful. Introducing a discrete lattice of
space-time points is the method of choice.

Input and Outputs: are described with comments at
www.spec.org/cpu2006/Docs/433.milc.html. .

Output: Non-timing sections of output is used to verify
correctness.

Programming Language: C
References:

[1] http://physics.indiana.edu/~sg
[2] http://physics.indiana.edu/~sg/milc.html

ACM SIGARCH Computer Architecture News

10

434.Zeusmp (Floating point benchmarks cont’d)

Author: Michael Norman, University of California, San
Diego

General Category: Physics / Magnetohydrodynamics

Description: based on ZEUS-MP, a computational fluid
dynamics code developed at the Laboratory for Computational
Astrophysics (NCSA, University of Illinois at Urbana-
Champaign) for the simulation of astrophysical phenomena.

The program solves equations of ideal, non-relativistic,
hydrodynamics and magnetohydrodynamics, including
gravitational fields. The physical problem solved in SPEC
CPU2006 is a 3-D blastwave simulated with the presence of a
uniform magnetic field along the x-direction. A Cartesian grid
is used and the boundaries are "outflow."

Input: The input file is zmp inp, which is described at
www.spec.org/cpu2006/Docs/434.zeusmp.html. The file
includes information on physical constants, grid information,
information on Equation of State, and problem control
information. In this test, it is a spherical blastwave.

Output: The output file contains physical information of the
blastwave at the beginning and the end of the run.

Programming Language: The main code is written in
Fortran 77, with the change that (as in all of SPEC's Fortran
benchmarks) DOUBLE PRECISION has been replaced by
REAL*8

Known Portability Issues: None
References:

[1] http://cosmos.ucsd.edu/Ica-
www/software/lca_intro zeusmp.html

Vol. 34, No. 4, September 2006

435.gr0macs (Floating point benchmarks cont’d)

Author: Erik Lindahl, Stockholm Bioinformatics Centre;
David van der Spoel, Uppsala University

General Category: Chemistry / Molecular Dynamics

Description: 435.gromacs is derived from GROMACS, a
versatile package that performs molecular dynamics, i.e.
simulation of the Newtonian equations of motion for systems
with hundreds to millions of particles. Although primarily
designed for biochemical molecules such as proteins and
lipids that have many complicated bonded interactions,
GROMACS is also fast at calculating the nonbonded
interactions that usually dominate the simulation -cost.
Therefore,it is also used for research on non-biological
systems, such as polymers.

The benchmark version performs a simulation of the
protein Lysozyme in a solution of water and ions. The
structure of a protein is normally determined by experimental
techniques such as X-ray crystallography of NMR
spectroscopy. By simulating the atomic motions of these
structures, one can gain significant understanding of protein
dynamics and function, and, in some cases, it might even be
possible to predict the structure of new proteins.

A dodecahedron-shaped box is used to reduce the
amount of solvent water, but there are still 23179 atoms in the
system. The simulation time is dominated by inner loops
where nonbonded Lennard-Jones and Coulomb interactions
are calculated between atoms closer than 1.4 nm in space.

Input: gromacs.tpr with identical setup but a different num-
ber of steps: 1500 for test, 3000 for train, and 6000 for ref

Output: average potential energy and system temperature,
and the number of floating point operations performed.
Molecular dynamics is a chaotic process. Normally, quite
agressive compiler optimizations are used to compile the code,
hence slight variations are normal. The results shouldn't differ
by more than 1.25% from the reference values.

Programming Language: C and Fortran. The only Fortran
code is the inner loops (innerf.f).which typically account for
more than 95% of the runtime.

Known Portability Issues: If a Fortran compiler does not
append an underscore to external names, you can use the flag
-DSPEC_CPU_APPEND UNDERSCORE

SPEC has chosen some settings in config.h to select
whether the C compiler supports strdup(), strcasecmp(), etc. If
a compiler should come along that is incompatible with
SPEC's settings in config.h, SPEC should be notified.

References:
[1] http://www.gromacs.org

ACM SIGARCH Computer Architecture News

1"

436.cactusADM (Floating point benchmarks cont’d)

Author: Malcolm Tobias, Washington University School of
Medicine

General Category: Physics / General Relativity

Description: CactusADM is a combination of Cactus, an
open source problem solving environment, and BenchADM, a
computational kernel representative of many applications in
numerical relativity (ADM stands for ADM formalism
developed by Arnowitt, Deser and Misner). CactusADM
solves the Einstein evolution equations, which describe how
spacetime curves as response to its matter content, and are a
set of ten coupled nonlinear partial differential equations, in
their standard ADM 3+1 formulation. A staggered-leapfrog
numerical method is used to carry out the update.

Input: The program requires a parameter file
BenchADM.par. This file defines the grid size, as well as the
number of iterations which the code will run. The input file
can be modified to print out timing information, but this has
not been implemented in CPU2006. The initial data represents
flat space. Geodesic slicing is used.

QOutput: The iteration, time, and gxx and gyz components of
the metric which are coordinate-dependent descriptions of the
space time are printed for validation.

Programming Language: Fortran 90, ANSI C

Known Portability Issues: None

References:
[1] The Cactus Code web site: www.cactuscode.org

Vol. 34, No. 4, September 2006

437.1eslie3d (Floating point benchmarks cont’d)

Authors: Christopher Stone, Suresh Menon Georgia Institute
of Technology

General Category: Computational Fluid Dynamics (CFD)

Description: 437.leslie3d is derived from LESlie3d (Large-
Eddy Simulations with Linear-Eddy Model in 3D), a research-
level Computational Fluid Dynamics (CFD) code wused to
investigate a wide array of turbulence phenomena such as
mixing, combustion, and acoustics.

LESlie3d uses a strongly-conservative, finite-volume
algorithm with the MacCormack Predictor-Corrector time
integration scheme. The accuracy is fourth-order spatially and
second-order temporally.

For CPU2006, the program solves a test problem using
the temporal mixing layer. This type of flow occurs in the
mixing regions of all combustors that employ fuel injection
(which is nearly all combustors). The benchmark version,
437.leslie3d, performs limited file I/O using a theoretically
exact problem.

Input: Three different input stack sizes, test, train, ref, are
available, representing an increasing grid resolution for the
solution. Input parameters include the grid size, flow
parameters and boundary conditions.

Output: The output includes analysis information that tracks
the momentum thickness through time.

Programming Language: Fortran 90
Known Portability Issues: None known.

References:
[1] www.ccl.gatech.edu

ACM SIGARCH Computer Architecture News

12

444.namd (Floating point benchmarks cont’d)

Author: Jim Phillips, University of Illinois

General Category: Scientific, Structural Biology, Classical
Molecular Dynamics Simulation

Description: The 444.namd benchmark is derived from the
data layout and inner loop of NAMD, a parallel program for
the simulation of large biomolecular systems.

Although NAMD was a winner of a 2002 Gordon Bell
award for parallel scalability, serial performance is equally
important to the over 10,000 users who have downloaded the
program over the past several years. Almost all of the runtime
is spent calculating inter-atomic interactions in a small set of
functions. This set was separated from the bulk of the code to
form a compact benchmark for CPU2006. This computational
core achieves good performance on a wide range of machines,
but contains no platform-specific optimizations.

Input: a 92224 atom simulation of apolipoprotein A-I is used
as a standard NAMD benchmark. This particular file format is
created by NAMD 2.5 using the "dumpbench" command, and
eliminates the need for file readers and other setup code from
the benchmark. Test, train and ref read from the same input
file, but run the code for different number of iterations. For ref
the code is run for 38 iterations.

Output: various checksums on the force calculations.
Programming Language: C++

Known Portability Issues: The benchmark is written in
conservative C++, is quite portable, and the inner loop code
(module ComputeNonbondedUtil.C) contains no aliasing. The
erfc() function is required for startup. On Windows,
-DWIN32ERFC is defined during compilation to build a
version of erfc() for little-endian, 32-bit and 64-bit platforms.
This is only needed for startup, and should not affect overall
performance.

References:

[1] www.ks.uiuc.edu/Research/namd/

[2] Laxmikant Kale, Robert Skeel, Milind Bhandarkar,
Robert Brunner, Attila Gursoy, Neal Krawetz, James
Phillips, Aritomo Shinozaki, Krishnan Varadarajan, and
Klaus Schulten. NAMD?2: Greater scalability for parallel
molecular dynamics. Journal of Computational Physics,
151:283-312, 1999.

Vol. 34, No. 4, September 2006

447.dealll (Floating point benchmarks cont’d)

General Category: Solution of Partial Differential
Equations using the Adaptive Finite Element Method

Authors: Wolfgang Bangerth, Guido Ralf

Hartmann and other contributors cited at [1].

Kanschat,

Description: The benchmark uses deal.Il, a C++ program
library targeted at adaptive finite elements and error
estimation. The library uses state-of-the-art programming
techniques of the C++ programming language, including the
Boost library. It offers a modern interface to the complex data
structures and algorithms required for adaptivity and enables
use of a variety of finite elements in one, two, and three space
dimensions, as well as time-dependent problems.

The main aim of deal.Il is to enable development of
modern finite element algorithms, using among other aspects
sophisticated error estimators and adaptive meshes. The
deal.Il library provides the application programmer with grid
handling and refinement, handling of degrees of freedom,
input of meshes and output of results in graphics formats, and
support for several space dimensions.

The testcase solves a Helmholtz-type equation with non-
constant coefficients that is at the heart of solvers for a variety
of applications. It uses modern adaptive methods based on
duality weighted error estimates to generate optimal meshes.
The equation is solved in 3d.

Input: Except for the number of refinement steps, the input is
generated by code in the benchmark, using small modules that
have been added to the library. This is a typical approach in
many finite element applications, and is chosen for efficiency.

Output: The output describes the problem state at each
refinement step. To reduce the amount of output, the
benchmark downsamples the solution to a coarser grid In
addition, the program prints the number of the iteration, the
number of degrees of freedom in this iteration, the computed
value for the point evaluation and an estimated error.

Programming Language: C++, incl. the Boost library [2\

Known Portability Issues: Because deal.Il uses state-of-
the-art C++ programming techniques, a number of minor
errors have been found in various compilers. There is also one
major portability issue regarding an unspecified item in the
C++ standard: deal.Il implements support for 1d, 2d, and 3d
using a system of templates and explicit specializations. This

problem is described in more detail at
www.spec.org/cpu2006/Docs/447.dealll.html
References:
[1] http://www.dealii.org/
[2] http://www.boost.org/
ACM SIGARCH Computer Architecture News

13

450.s0plex (Floating point benchmarks cont’d)

Authors:
Achterberg

Roland Wunderling, Thorsten Koch, Tobias

General Category: Simplex Linear Program (LP) Solver

Description: 450.soplex is based on SoPlex Version 1.2.1.
SoPlex solves a linear program using the Simplex algorithm.
The LP is given as a sparse m by n matrix A, together with a
right hand side vector b of dimension m and an objective
function coefficient vector ¢ of dimension n. The matrix is
sparse in practice. SoPlex employs algorithms for sparse linear
algebra, in particular a sparse LU-Factorization and solving
routines for the resulting triangular equation systems.

Input: test uses the "finnis" test problem from netlib [1], with
497 rows and 614 columns. Train uses rail582 [2] with 582
rows and 55,515 columns, and pds-20.mps [3] with 33,874
rows and 105,728 columns. Ref uses rail2586 with 2586 rows
and 920,683 columns, and pds-50.mps with 83,060 rows and
270,095 columns. The test model is solved to full optimality;
train and ref are solved until an iteration limit is reached.

Output: includes the objective function for the optimal
solution or the value of the objective function after the
iteration limit and the number of iterations performed.

Programming Language: ANSI C++
Known Portability Issues: none

References:

[1] http://www.netlib.org/lp/data

[2] J. E. Beasley's OR Library describes the rail problems
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html
and they are available at Mittelmann's rail directory
http://plato.asu.edu/ftp/Iptestset/rail/

W. J. Carolan, J. E. Hill, J. L. Kennington, S. Niemi, S. J.
Wichmann, "An Empirical Evaluation of the KORBX
Algorithms for Military Airlift Applications" Operations
Research vol. 38, no. 2 (1990), pp. 240-248. The pds-20
and pds-50 models were obtained from Hans Mittelman's
website http://plato.asu.edu/bench.html .

SoPlex: www.zib.de/Optimization/Software/Soplex
Roland Wunderling, Paralleler und Objektorientierter
Simplex-Algorithmus, ZIB report TR 96-09, Berlin 1996.
www.zib.de/Publications/abstracts/TR-96-09

Robert J. Venderbei, Linear Programming: Foundations
and Extensions, Second Edition, Kluwer Academic Pub-
lishers, 2001.

George Dantzig, Linear Programming and Extensions,
Princeton University Press 1998, (1963).

[3]

Vol. 34, No. 4, September 2006

453.povray (Floating point benchmarks cont’d)

Author: POV-Team, contact Thorsten Frohlich
General Category: Computer Visualization

Description: POV-Ray is a ray-tracer. Ray-tracing is a
rendering technique that calculates an image of a scene by
simulating the way rays of light travel in the real world, but it
does so backwards. In the real world, rays of light are emitted
from a light source and illuminate objects. The light reflects
off of the objects or passes through transparent objects. This
reflected light hits the human eye or a camera lens. As the vast
majority of rays never hit an observer, it would take forever to
trace a scene. Thus, ray-tracers start with their simulated
camera and trace rays backwards out into the scene. For every
pixel rays are shot from the camera into the scene to see if it
intersects with any of the objects in the scene. Every time an
object is hit, the color of the surface at that point is calculated.
For this purpose rays are sent to each light source to determine
the amount of light coming from it or if the object is in
shadow.

POV-Ray supports 30 different geometric objects
including blobs, quadrics, spheres, cylinders, polygons,
meshes, isosurfaces and constructive solid geometry.
Intersections of rays with geometry objects are computed by
solving complex mathematical equations directly or by
numeric approximation algorithms. All these algorithms are
sensitive to floating-point accuracy.

Input: 453.povray renders a 1280x1024 pixel anti-aliased
image of a chessboard with all pieces in the starting position.
The objects were selected to show various geometry objects
available in POV-Ray. The input also generates a height field
out of a simple fractal function and provides the function for
an isosurface object. All objects in the scene have procedural
textures that determine their surface texture. Many of these
textures make use of a variant of the Perlin noise function.
Some objects refract light and others are highly reflective.

Output: The output files are the rendered image and a log
containing statistical information about the intersection tests
performed and other related information.

Programming Language: ISO C++

Known Portability Issues: mathimf.h is included for the
Intel compiler by using -DSPEC_CPU_ WINDOWS ICL.

References:

[1] POV-Ray (Persistence of Vision Raytracer) available at
http://www.povray.org

[2] Andrew S. Glassner: An Introduction to Ray tracing.
Academic Press 1989, ISBN 0-12-286160-4.

ACM SIGARCH Computer Architecture News

14

454.calculix (Floating point benchmarks cont’d)

Author: Guido D.C. Dhondt
General Category: Structural Mechanics

Description: 454.calculix is based on CalculiX, a free
software finite element code for linear and nonlinear three-
dimensional structural applications. It uses classical theory of
finite elements described in books such as [4]. CalculiX can
solve problems such as static problems (bridge and building
design), buckling, dynamic applications (crash, earthquake
resistance) and eigenmode analysis (resonance phenomena). .

Input: a mesh describing the geometry of the structure,
material properties, geometric boundary conditions and natural
boundary conditions. The reference example describes the
deformation of a compressor disk due to centrifugal load. The
compressor disk is rotated at high speed and deformation and
stresses are analyzed. Only a segment describing one seventh
of the disk was modelled. The other six seventh are taken into
account by cyclic symmetry conditions. The material of the
disk is a combination of linear elastic, viscoelastic, Ogden-
type and Ramberg-Osgood-type material. Target of the
calculation is the displacement and stress field at full speed.

QOutput: The output consists of variable fields across the
structure, usually the displacements and the stresses.

Programming Language: 454.calculix uses Fortran 90 and
C. SPOOLES [7], the mathematical code to solve the set of
linear equations generated by CalculiX CrunchiX, in C.

Known Portability Issues: If your C compiler does not
support the C99 format %zd, try compiling with
-DSPEC_CPU _NOZMODIFIER

References:

[1] www.calculix.de

[2] www.dhondt.de

[3] Dhondt, G., "The Finite Element Method for Three-
Dimensional Thermomechanical Applications", Wiley,
2004.

Zienkiewicz, O.C. and Taylor, R.L., "The Finite Element
Method", Fourth Edition, McGraw Hill, 1989

Belytschko, T., Liu, W.K.L. and Moran, B., "Nonlinear
Finite Elements for Continua and Structures", Wiley,
2000.

Hughes, T.J.R., "The Finite Element Method", Dover,
2000.

SPOOLES: http://netlib.bell-
labs.com/netlib/linalg/spooles/spooles.2.2.html

Vol. 34, No. 4, September 2006

459.GemsFDTD (Floating point benchmarks cont’d)

Authors: UIf Andersson and others at the Parallel and
Scientific Computing Institute (PSCI) in Sweden.

General
(CEM)

Category: Computational Electromagnetics

Description: solves the Maxwell equations in 3D in the time
domain using the finite-difference time-domain (FDTD)
method. The radar cross section (RCS) of a perfectly
conducting (PEC) object is computed. GemsFDTD is a subset
of GemsTD from GEMS (General ElectroMagnetic Solvers).

The core of the FDTD method are second-order accurate
central-difference approximations of Faraday's and Ampere's
laws. These central-differences are employed on a staggered
Cartesian grid resulting in an explicit finite-difference method.
An incident plane wave is generated using so-called Huygens'
surfaces. This means that the computational domain is split
into a total-field part and a scattered field part, where the
scattered field part surrounds the total-field part. The
computational domain is truncated by an absorbing layer in
order to minimize the artificial reflections at the boundary.
The Uni-axial perfectly matched layer (UPML) by Gedney is
used here. A time-domain near-to-far-field transformation
computes the RCS according to the Martin and Pettersson.

The train case uses a smaller computational domain and
a thinner absorbing-boundary-condition layer.

Input: The inputs define problem size, number of time steps,
cell size, CFL value, the excitation, an incident plane wave,
the absorbing layer, and the near-to-far-field transform.

QOutput: The output is an ASCII file containing the
requested RCS data Two included Matlab scripts can be used
for plotting (though they are not used by SPEC). For the PEC
sphere, an analytical reference solution is supplied.

Programming Language: Fortran 90
Known Portability Issues: None

References:

[17] www.psci.kth.se/Programs/GEMS/

[2] Allen Taflove, Computational Electrodynamics: The Fi-
nite-Difference Time-Domain Method, Artech House,
2000

T. Martin and L. Pettersson, IEEE Trans. Ant. Prop. Vol.
48, No. 4, pp. 494-501, Apr. 2000.

S. Gedney, IEEE Trans. Ant. Prop., vol. 44, no. 12, pp
1630-1639, Dec. 1996.

A report on a subset of GemsFDTD may be found at
http://www.pdc.kth.se/info/research/trita/PDC_TRITA 2

002_1.pdf

ACM SIGARCH Computer Architecture News

15

465.tonto (Fioating point benchmarks cont’d)

Authors: Daniel J. Grimwood and Dylan Jayatilaka
General Category: Quantum Crystallography

Description: Tonto is an open source quantum chemistry
package. Objectives include simplicity, portability, and
extensibility. Tonto is written in an object oriented design, in
Fortran 95. It uses derived types and modules to represent
classes. Classes range from integers and text files, to atoms,
spacegroups and molecules. Tonto uses dynamic memory and
array operations.

The profiles of Tonto calculations are typical of ab initio
quantum chemistry packages: a large portion is dedicated to
the evaluation of integrals between products of Gaussian basis
functions. The SPEC reference calculation is in the field of
quantum crystallography. It places a constraint on a molecular
Hartree-Fock wavefunction calculation to better match
experimental X-ray diffraction data. It is expected that other
similar ~ properties calculated from the constrained
wavefunction should also agree better with experiment.

Input: The input file contains the crystal structure, atom
positions, and basis functions, and experimental X-ray
diffraction data. It then gives calculation parameters, and does
the calculation. The crystal structure, atom positions, and X-
ray data are from the literature.

Output: The main output file is regularly updated to show
how far the calculation is from the final answer. Once the final
model wavefunction is obtained, the X-ray diffraction data
calculated from it are printed out together with the
experimental data and compared. The chi® of one means the
calculated and experimental data sets agree to within
experimental accuracy.

Programming Language: Fortran 95

Known Portability Issues: Tonto makes extensive use of
new features added with the Fortran 90/95 standards such as
generic interfaces and vector subscripts. Some older compilers
may not support these features.

References:

[1] Tonto home page - www.theochem.uwa.edu.au/tonto/

[2] D. Jayatilaka and D. J. Grimwood, Computational Sci-
ence - ICCS 2003, 2660, 142-151, (2003)

[3] D. Jayatilaka and D. J. Grimwood, Acta Cryst., A57, 76-
86, (2001)

[4] M. Messerschmidt, A. Wagner, M. W. Wong and P.

Luger, J. Am. Chem. Soc., 124(5), 732-733, (2002)

[5] D.J. Grimwood, I. Bytheway and D. Jayatilaka, J. Comp.

Chem., 24(4), 470-483, (2003)

Vol. 34, No. 4, September 2006

470.1bm (Floating point benchmarks cont’d)

Author: Thomas Pohl

General Category: Computational Fluid Dynamics, Lattice
Boltzmann Method

Description: This program implements the so-called "Lattice
Boltzmann Method" (LBM) to simulate incompressible fluids.
It is the computationally important part of a larger code use in
material science to simulate fluids with free surfaces, in
particluar the formation and movement of gas bubbles in metal
foams [1]. For benchmarking purposes, the code makes
extensive use of macros which hide the details of the data
access. A visualization of the submitted code can be seen at
www.spec.org/cpu2006/Docs/470.1bm.html

Input: number of time steps and choice among two basic
simulation setups, lid-driven cavity (shear flow driven by a
"sliding wall" boundary condition) and channel flow (flow
driven by inflow/outflow boundary conditions)

The basic steps of the simulation code are: If an obstacle
file was specified it is read and the obstacle cells are set
accordingly. The specified number of time steps are calculated
in the selected simulation setup (lid-driven cavity or channel
flow). Depending on the action chosen the result is either
stored, compared to an existing result file, or thrown away. In
the Lattice Boltzmann Method, a steady state solution is
achieved by running a sufficient number of model time steps.

For the reference workload, 3000 time steps are
computed. The test and training workloads, use a smaller
number of steps. The geometry used in the training workload
is different from the geometry used in the reference workload.
Also, the reference workload uses a shear flow boundary
condition, whereas the training workload does not.
Nevertheless, the computational steps stressed by the training
workload are the same as those stressed in the reference run.

Output: the 3D velocity vector for each cell.
Programming Language: ANSI C
Known Portability Issues: None

References:

[1] The FreeWiHR homepage http://www10.informatik.uni-
erlangen.de/en/Research/Projects/FreeWiHR

[2] Y.-H. Qian, D. d'Humieres, and P. Lallemand: Lattice

BGK models for Navier-Stokes equation. Europhys. Lett.

17(6): 479-484, 1992

Thomas Pohl, Markus Kowarschik, Jens Wilke, Klaus Igl-

berger, and Ulrich Riide: Optimization and Profiling of

the Cache Performance of Parallel Lattice Boltzmann

Codes. Parallel Processing Letter 13(4) 549-560, 2003,

postscript copy available on the SPEC media

[3]

ACM SIGARCH Computer Architecture News

16

481.wrf (Floating point benchmarks cont’d)

Authors: National Center for Atmospheric Research
(NCAR) in collaboration with multiple government agencies,
universities, and many others [1].

General Category: Weather Forecasting

Description: 481.wrf is based on the Weather Research and
Forecasting (WRF) Model, which is a next-generation
mesocale numerical weather prediction system designed to
serve both operational forecasting and atmospheric research
needs.

WREF features multiple dynamical cores, a 3-dimensional
variational (3DVAR) data assimilation system, and a software
architecture allowing for computational parallelism and
system extensibility. WREF is suitable for a broad spectrum of
applications across scales ranging from meters to thousands of
kilometers.

The parallel portions of the code have been turned off for
SPEC CPU2006 as the interest here is in single processor
performance. WRF version 2.0.2 is used in the benchmark
version, 481.wrf.

Input: The WRF Standard Initialization (SI) software is used
to create the data sets.

The June 2001 SI data archived at NCAR is used as data
sets. The data is 10 km from 1200 UTC June 11 - 1200 UTC
Jun 12 2001 at 3 h interval.

Output: The temperature at a certain grid point is printed for
every time step and validated.

Programming Language: Fortran 90 and C

Known Portability Issues: 481.wrf requires the netCDF
library for I/O. netCDF is packaged as part of the source, but
may need to be configured for your system. SPEC_CPU
portability options are provided.

481.wrf uses unformatted 1/O to read its data files. By
default, files with 4-byte headers will be read. If your system
requires 8-byte headers, please set “wrf data header size = 8”
in the 481.wrf section of your config file.

References:

[1] The wrf development teams are listed at http://www.wrf-
model.org/development/development.php. Wrf uses
netcdf, which has many contributors as detailed at
http://www.unidata.ucar.edu/software/netcdf/credits.html

[2] http://www.wrf-model.org/index.php

Vol. 34, No. 4, September 2006

482.sphinx3 (Floating point benchmarks cont’d)

Authors: Sphinx Speech Group, Carnegie Mellon University
[1]. Thank you especially to CMU Researchers Evandro
Gouevea, Arthur Chan, and Richard Stern for their assistance
to SPEC in creating this version. Thanks also to Paul Lamere
of Sun for timely consulting on many porting questions.

General Category: Speech Recognition

Description: Sphinx-3 is a widely known speech recognition
system from Carnegie Mellon University.

This description assumes that the reader has already seen
the Sphinx 3 introduction [2], which provides an excellent
introduction to the inputs, outputs, and operation of the code.
(A copy of this file as of mid-2005 is included in the SPEC
CPU2006 kit).

CMU supplies a program known as livepretend, which
decodes utterances in batch mode, but otherwise operates as if
it were decoding a live human. In particular, it starts from raw
audio, not from an intermediate (cepstra) format. Although in
real life 10 efficiency is obviously important to any speech
recognition system, for SPEC CPU purposes we wish to
concentrate on the CPU-intensive portions of the task.
Therefore, main live pretend.c has been adapted as
spec_main_live pretend.c, which reads all the inputs during
initialization and then processes them repeatedly with different
settings for the "beams" (the probabilities that are used to
prune the set of active hypotheses at each recognition step).

Input: The AN4 Database from CMU [3] is used. The raw
audio format files are used in either big endian or little endian
form (depending on the current machine).

Output: Correct recognition is determined by examination of
which utterances were recognized (see lines "FWDVIT" in the
generated .log files), as well as a trace of language and
acoustic scores.

Programming Language: C
Known Portability Issues: None

References:

[1] http://www.speech.cs.cmu.edu/

[2] http://cmusphinx.sourceforge.net/sphinx3/s3_description.
html

www.speech.cs.cmu.edu/databases/an4
http://cmusphinx.sourceforge.net/sphinx3/

[3]
[4]

ACM SIGARCH Computer Architecture News

17

999.specr and (floating point set),
and
998.specrand (integer set)

Author: Cloyce D. Spradling
General Category: Mine Canary

Description: specrand is a small harness for the algorithm
presented in [1]. The datatypes used have been modified so
that the algorithm will work properly on systems with 64-bit
longs The benchmark simply generates a sequence of
pseudorandom numbers starting with a known seed.

This benchmark is not a timed component of CPU2006;
rather, it's there as an indicator of larger problems. Several of
the other benchmarks use the specrand code as their PRNG.
Thus, a failure in 999.specrand would point out a source of
error in those codes as well. This is cheap (in both time and
space) insurance.

Input: 999.specrand's input consists of two numbers: a seed
value for the PRNG, and a count of the numbers to generate.

Output: The specified number of random numbers are
generated and output twice. The first set is unscaled output
from the PRNG output as a standard floating point number
with no size or precision modifiers (printf '%f format). The
second set is scaled to between 1 and 2048000, and is output
as a standard integer with no size modifiers (printf '%d'
format). The PRNG is not re-seeded between sequences, so
actually count*2 numbers are generated.

Programming Language: ANSI C

Known Portability Issues: This code probably will not
work on a system where the standard 'int' type is 64-bits wide.

References:

[1] S. K. Park and K. W. Miller: "Random number
generators: good ones are hard to find" October 1988.
Communications of the ACM vol. 31 #10.
http://doi.acm.org/10.1145/63039.63042

Vol. 34, No. 4, September 2006

