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Memory Operands

D




RISC-V is byte-addressable
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Word-Addressable Memory

e Each 32-bit data word has a unique
address

Word Address Data Word Number

00000004 | CD|1 9/A 6|5 B| Word 4
00000003 |4 O|F 3|0 7|8 8| Word 3
00000002 |0 1|E E|2 8|4 2| Word 2
00000001 |F 2|F 1|A C|0 7/ Word1

00000000, |A B|C D|E F| 7 8 Word O

-« >
width = 4 bytes

RISC-V uses byte-addressable memory, which we’ll talk about next.
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Reading Word-Addressable Memory

e Memory read called load
¢ Mnemonic: load word (]_W) &— I‘%ﬁ Tnsteudhon

o Format: . +\ c - (§0+§>
w1, (500))

lw destination, offset (base) / |
e Address calculation: gold [ IL__{ber
°{0 _|ofA
— add base address (s0) to the offset (5) g:{;_r 2;2
— address =(s0 +5) Foos T [ wei
Jor —> ¥oo - I
e Result: ’ 'L\—J“"J

— t1 holds the data value at address (s0 + 5)

Any register may be used as base address
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Reading Word-Addressable Memory

e Example: read a word of data at memory
address 1 into s3
— address=(0+1)=1

— 53 =0xF2F1ACO7 after load

Assembly code
lw s3, 1(zero)

# read memory word 1 into s3

Word Addressl

00000004
00000003
00000002
00000001
00000000

Data

Word Number

19

A b

5B

Word 4

F 3

0 7

8 8

Word 3

EE

2 8

4 2

Word 2

F

AC

———

07

DWord 1

CD

EF

7 8

Word 0
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Writing Word-Addressable Memory

e Memory write is called a store
e Mnemonic: store word (sw)




Writing Word-Addressable

e Example: Write (store) the value in £t 4 into

memory address 3

add the base address (zero) to the offset (0x3)
address: (0 + 0x3) =

for example, if t4 holds the value OXFEEDCABB, then after this
instruction completes, word 3 in memory will contain that value

Offset can be
written in
decimal
(default) or
hexadecimal

Assembly code

3

sw t4, 0x3(zero)

# write the value in t4
# to memory word 3

Word Number

Word Addressl Data
00000004 |C D|1 9|A 6|5 B
00000003 |FE|/E DIC A BB
00000002 O1|EE|2 8|4 2
00000001 |F 2|F 1|A C|O 7
00000000 |A B|C D|E F|7 8

Word 4
Word 3
Word 2
Word 1
Word 0



Byte-Addressable Memory

e Each data byte has a unique address

e Load/store words or single bytes: load byte (1b)
and store byte (sb)

e 32-bit word = 4 bytes, so word address increments

Byte Address IWord Address

by 4
1312 11|10
F E D C
B|A| 9| 8
7 6 | 5
3| 2 1 0

00000010
0000000C
00000008
00000004
00000000

Data

Word Number

CD

19

A ©

5B

4 0

F 3

0 7

8 8

01

EE

2 8

4 2

F 2

F1

A C

0 7

A B

CD

EF

7 8

-«

>

width = 4 bytes

Word 4
Word 3
Word 2
Word 1
Word 0

Jw 1, 0xc 7
e tho ©
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Reading Byte-Addressable Memory

e The address of a memory word must now be
multiplied by 4. For example,

— the address of memory word 2is2 x4 =8
— the address of memory word 10 is 10 X 4 =40 (0x28)

Wte-addressed, not word-add@
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Reading Byte-Addressable Memory

e Example: Load a word of data at memory
address 8 into s 3.

e 53 holds the value Ox1EE2842 after load

RISC-V assembly code

lw s3, 8(zero) # read word at address 8 into s3

Byte Address IWord Addressl Data Wprd Number
1312 |11 | 10 00000010 |C D|1 9|A 6|5 B| Word 4

F | E| D/ |C 0000000C |4 O|F 3|0 7|8 8] Word 3

B| A |9 00000008 |01/ EE|2 8/4 2] Word 2

7| 6|5 00000004 |F 2(F 1|A C|0 7/ Word 1
312 1,0 00000000 |A B/CD|E F|7 8 WordO
MSB LSB < >

width = 4 bytes



Writing Byte-Addressable Memory

e Example: store the value held in £7 into memory address

0x10 (16

— if £7 holds the value OXAABBCCDD, then after the sw completes,

)

word 4 (at address 0x10) in memory will contain that value

RISC-V assembly code

sw t7,

0x10 (zero)

13|12 | 11 | 10
F| E D |C
B| A |9
7] 6|5
32|10
MSB LSB

Byte Address  Word Address

00000010
0000000C
00000008
00000004
00000000

Data

Word Number

A A

BB

ccC

DD

4 0

F 3

0 7

8 8

01

EE

2 8

4 2

F 2

F1

A C

0 7

A B

CD

E F

78

-«

>

width = 4 bytes

# write t7 into address 16

Word 4
Word 3
Word 2
Word 1
Word 0



Branches & Jumps




* Execute instructions out of sequence

e Labels indicate instruction location. They can’t be
reserved words and must be followed by a colon (:)

C-Qou
/—1/
g s0=x= sl
5\ Z 49 ‘\'5\’

* Types of branches:

1 z1)

* branch if equal (beq) |
* branch if not equal (bne) tlst
* branch if less than (b1t) sl ¢ (SH'\3 - s0;

* branchif greater than or equal (bge) Negr: v
=

* jump (J)

e jump register (jr)

e jump and link (7a1l)

e jump and link register (jalr)

we'll talk
about these
when discuss
function calls
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The Branch Not Taken (beq)

# RISC-V assembly

addi s0, zero, 4 # sO0 =0+ 4 =4
addi sl, zero, 1 # s1 =0+ 1 =1
slli sl, sl1, 2 # s1 =1 << 2 =4
beqg sO, sl, target # branch to label
addi sl, s1, 1 # not executed
sub sl, sl1, sO # not executed
. 1)
S New
target:
add sl, sl1, sO # s1 =4 + 4 = 8
nextt A~
ANA
SNA™
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g604
§00%
400 C
¢o\o
5614
5618

O\
§020

sl,

sO

S = 3= = = S

sO =0 + 4
sl = 0 + 1
sl = 1 << 2
branch not
sl =4 + 1
sl =5 — 4
sl =1 + 4
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Unconditional Branching (7)

# RISC-V assembly

J target # jump to target

srai sl, sl1l, 2 # not executed

addi sl, s1, 1 # not executed

sub sl, sl1, sO # not executed
target:

add sl, sl1, sO # s1 =1 + 4 =5




Chapter 6: Architecture




e Access large amounts of similar data

e |[ndex: access each element

e Size: number of elements




e 5-element array

e Base address = 0x123B4780 (address of first

element, array[0])

* First step in accessing an array: load base

address into a register

A

Address

123B4790
123B478C
123B4788
123B4784
123B4780

Data

/

Main Memory
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Accessing Arrays of Characters

// C Code
—— char str[80] = “CAT”; // all strings terminate with \O
dwel 2 i - 00
qoog | T f
oo A |
¢joon | C | // compute length of string

// while () will terminate on null character \0 at end of string
while (str[len]) lent++;
qow
# RISC-V assembly code

# s0 = array base address, sl = len

while: add t0, s0, sl address of str[len]
1w tl, 0(t0) load str[len]
beg tl, zero, done are we at the end of the string?
addi sl1, s1, 1 len++
J while

H = H =

repeat while loop
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@

Machine Language

D




e Store-Type
e Branch-Type
e Differ only in immediate encoding

31:25 24:20 19:15  14:12 11:7 6:0 ‘/

immy.s | rs2 | rsl |funct3 | immy. op | S-Type

iMM12105| rs2 | rsl |[funct3 [imms.iq11] Op B-Type
7 bits 5bits 5bits 3 bits 5 bits 7 bits &
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S-Type

e Store-Type
e 3 operands:

oﬁv\)‘” e , awﬂ‘”

- base register &~ @
- rs2: value to be stored to memory
—  imm: 12-bit two’s complement immediate

e QOther fields:

- op: the opcode

=1 Z:(‘“5l 1 "WMQ

— Simplicity favors regularity: all instructions have opcode

— funct3: the function (3-bit function code)

— with opcode, tells computer what operation to perform

S-Type
31:25 24:20 19:15 14:12 11:7 6:0
MMy 1.5 ﬁs@ rsl |funct3 | immyg op
7 bits 5bits 5bits 3 bits 5 bits 7 bits
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S-Type Examples

Assembly
S'h"- WJ sw

sheve holé

23(t0)

werd ,23(x5)

Stort La*" sb t5, 0x2D (zero)
sb x30,0x2D (x0)

immy 15

rs2

Field Values

Machine Code

010 0011|| (0xFE79AD23)

(0x01429BA3)

010 0011}{ (0xO3E006A3)

rsl funct3 immgsg op immyys  rs2  rsl ftﬂc‘t_g immy. op
1111111 | 7 19 2 11010 35 1111111 |00111|10011f 010\ | 11010
0000 000 | 20 5 1 10111 35 0000 000 [10100(00101|f 001 || 10111 /0100011
0000001 | 30 0 0 01101 35 0000 001 {11110|00000 LO_OO 01101 L
7 bits 5 bits 5bits 3 bits 5 bits 7 bits 7 bits 5bits 5bits 3 bits 5 bits 7 bits
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B-Type

* Branch-Type (similar format to S-Type)

e 3 operands:

- rsl. register source 1
- rs2. register source 2

imm,,.;: 12-bit two’s complement immediate — address offset

e QOther fields:

- op: the opcode

— Simplicity favors regularity: all instructions have opcode
— funct3: the function (3-bit function code)
— with opcode, tells computer what operation to perform

B-Type
31:25 24:20 19:15 14:12 11:7 6:0
IMMy 105 rS2 | rsl |funct3 [immyg.q 11| Op
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits
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B-Type Example

e The 13-bit immediate encodes where to branch (relative HZ p
to the branch instruction X
. . . ) C‘ﬁﬂ\qyf 'FD 4’35
e Immediate encoding is strange Pe Py
e Example: Iy frine reletet sddr
# RISC-V Assembly
0x70 begq s0, t5, L1 )1
0x74 add sl1, s2, s3 )2
0x78 sub sb5, s6, s7 3
0x7C 1w to, )
0x80 Ll: addi sl1, sl —l5>4
L1 is 4 instructions (i.e., 16 bytes) past beqg j‘:\\"é'\' l L\i\' ov Zb\+§ 7
| D ()
Immqyo=16 0 0O 0 00O 0001 000D
bit number 12 11 10 9 8 7 6 5 4 3210
Assembly Field Values Machine Code
imMMy,105 rs2  rsl funct3 immgyq;  Op imMmiz10s rs2 rsl funct3 immgy31  Op
pea =0 5 %1 | 0000000 30 | 8 | o | 10000 | 99 ||000000011110/01000] 000 | 10000 [1100011] (0x01E40863)
4 ' 7bits  5bits 5bits 3bits  5bits 7 bits 7bits  5bits S5bits 3bits  5bits 7 bits
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Review: Instruction Formats

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits [\—'
funct7 | rs2 | rsl |funct3| rd op |[|R-Type
immyy.o rsl |funct3 rd op I-Type
immys | rs2 | rs1 |funct3 | immy,g op |S-Type
imMM1s105| rs2 | rsl |funct3 |imma.111| Op B-Type
IMM31-12 rd op U'Ty oe
IMM2010:1,11,19:12 rd op J-Type
20 bits 5 bits 7 bits
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Example Program: RISC-V Assembly

Address Machine Code

RISC-V Assembly Code

10144: £f010113 func: addi sp,sp,-16

10148: 00112623 SW ra,12 (sp)

1014c: 00812423 SW s0, 8 (sp)

10150: 00050413 mv s0, a0

10154: 00ab8533 add a0,al, a0

10158: 0005da63 bgez al,1016c <func+0x28>
1015c: 00c12083 1w ra,12 (sp)

10160: 00812403 1w s0, 8 (sp)

10164: 01010113 addi sp,sp, 16

10168: 00008067 ret

1016c: f£££58593 addi al,al, -1

10170: 00040513 mv a0, s0

10174: f£dlffOef Jal 1ra,10144 <func>
10178: 00850533 add a0,a0, s0

1017c: felffOo6f 7 1015¢c <func+0x18>
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