
Lesson 26:

RV32I Branching

ECE 281

Digital Design and Computer Architecture Lecture Notes

© 2021 Sarah Harris and David Harris
These notes may be used and modified for educational and/or
non-commercial purposes so long as the source is attributed.

Modified for use by USAF Academy, 2025

Digital Design & Computer Architecture Architecture

Chapter 6 :: Topics
Videos

• Branches

• Conditional Statements & Loops

• Arrays

• Machine Language: I, S/B, U/J-Type Instr.

2

https://youtu.be/npONPosFIDA
https://youtu.be/LfD4n2buV9w
https://youtu.be/XQDKFlPE_mo
https://youtu.be/G7R3P6n4nAI
George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Chapter 6: Architecture

Memory Operands

Digital Design & Computer Architecture Architecture

Memory

5

• First, we’ll discuss word-addressable memory

• Then we’ll discuss byte-addressable memory

 RISC-V is byte-addressable

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Digital Design & Computer Architecture Architecture

Word-Addressable Memory

6

• Each 32-bit data word has a unique
address

RISC-V uses byte-addressable memory, which we’ll talk about next.

Word Address Data

00000003

00000002

00000001

00000000

width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

C D 1 9 A 6 5 B00000004

Word 3

Word 2

Word 1

Word 0

Word 4

Word Number

George York

George York

Digital Design & Computer Architecture Architecture

Reading Word-Addressable Memory

7

• Memory read called load

• Mnemonic: load word (lw)
• Format:

 lw t1, 5(s0)

 lw destination, offset(base)

• Address calculation:
– add base address (s0) to the offset (5)

– address = (s0 + 5)

• Result:
– t1 holds the data value at address (s0 + 5)

 Any register may be used as base address

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Digital Design & Computer Architecture Architecture

Reading Word-Addressable Memory

8

• Example: read a word of data at memory
address 1 into s3
– address = (0 + 1) = 1

– s3 = 0xF2F1AC07 after load

Assembly code
lw s3, 1(zero) # read memory word 1 into s3

Word Address Data

00000003

00000002

00000001

00000000

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

C D 1 9 A 6 5 B00000004

Word 3

Word 2

Word 1

Word 0

Word 4

Word Number

George York

George York

Digital Design & Computer Architecture Architecture

Writing Word-Addressable Memory

9

• Memory write is called a store

• Mnemonic: store word (sw)

Digital Design & Computer Architecture Architecture

Writing Word-Addressable
Memory

10

• Example: Write (store) the value in t4 into
memory address 3
– add the base address (zero) to the offset (0x3)

– address: (0 + 0x3) = 3

– for example, if t4 holds the value 0xFEEDCABB, then after this
instruction completes, word 3 in memory will contain that value

Assembly code
sw t4, 0x3(zero) # write the value in t4

 # to memory word 3

Word Address Data

00000003

00000002

00000001

00000000

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

C D 1 9 A 6 5 B00000004

Word 3

Word 2

Word 1

Word 0

Word 4

Word Number

Offset can be
written in
decimal
(default) or
hexadecimal

Word Address Data

00000003

00000002

00000001

00000000

F E E D C A B B

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

C D 1 9 A 6 5 B00000004

Word 3

Word 2

Word 1

Word 0

Word 4

Word Number

Digital Design & Computer Architecture Architecture

Byte-Addressable Memory

11

• Each data byte has a unique address

• Load/store words or single bytes: load byte (lb)
and store byte (sb)

• 32-bit word = 4 bytes, so word address increments
by 4

Word Address Data

0000000C

00000008

00000004

00000000

width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

Word 3

Word 2

Word 1

Word 0

Byte Address

MSB

F E D C

B A 9 8

7 6 5 4

3 2 1 0

C D 1 9 A 6 5 B13 12 11 10 00000010 Word 4

LSB

Word Number

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Digital Design & Computer Architecture Architecture

Reading Byte-Addressable Memory

12

• The address of a memory word must now be
multiplied by 4. For example,
– the address of memory word 2 is 2 × 4 = 8

– the address of memory word 10 is 10 × 4 = 40 (0x28)

• RISC-V is byte-addressed, not word-addressed

George York

Digital Design & Computer Architecture Architecture

Reading Byte-Addressable Memory

13

• Example: Load a word of data at memory
address 8 into s3.

• s3 holds the value 0x1EE2842 after load
RISC-V assembly code
lw s3, 8(zero) # read word at address 8 into s3

Word Address Data

0000000C

00000008

00000004

00000000

width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

Word 3

Word 2

Word 1

Word 0

Byte Address

MSB

F E D C

B A 9 8

7 6 5 4

3 2 1 0

C D 1 9 A 6 5 B13 12 11 10 00000010 Word 4

LSB

Word Number

Digital Design & Computer Architecture Architecture

Writing Byte-Addressable Memory

14

• Example: store the value held in t7 into memory address
0x10 (16)
– if t7 holds the value 0xAABBCCDD, then after the sw completes,

word 4 (at address 0x10) in memory will contain that value

Word Address Data

0000000C

00000008

00000004

00000000

width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

Word 3

Word 2

Word 1

Word 0

Byte Address

MSB

F E D C

B A 9 8

7 6 5 4

3 2 1 0

C D 1 9 A 6 5 B13 12 11 10 00000010 Word 4

LSB

Word Number

RISC-V assembly code
sw t7, 0x10(zero) # write t7 into address 16

Word Address Data

0000000C

00000008

00000004

00000000

width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

Word 3

Word 2

Word 1

Word 0

Byte Address

MSB

F E D C

B A 9 8

7 6 5 4

3 2 1 0

A A B B C C D D13 12 11 10 00000010 Word 4

LSB

Word Number

Chapter 6: Architecture

Branches & Jumps

Digital Design & Computer Architecture Architecture

Branching

16

• Execute instructions out of sequence
• Labels indicate instruction location. They can’t be

reserved words and must be followed by a colon (:)
• Types of branches:

– Conditional
• branch if equal (beq)
• branch if not equal (bne)
• branch if less than (blt)
• branch if greater than or equal (bge)

– Unconditional
• jump (j)
• jump register (jr)
• jump and link (jal)
• jump and link register (jalr)

We’ll talk
about these
when discuss
function calls

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Digital Design & Computer Architecture Architecture

The Branch Not Taken (beq)

17

RISC-V assembly

 addi s0, zero, 4 # s0 = 0 + 4 = 4

 addi s1, zero, 1 # s1 = 0 + 1 = 1

 slli s1, s1, 2 # s1 = 1 << 2 = 4

 beq s0, s1, target # branch to label

 addi s1, s1, 1 # not executed

 sub s1, s1, s0 # not executed

target:

 add s1, s1, s0 # s1 = 4 + 4 = 8

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Digital Design & Computer Architecture Architecture

The Branch Not Taken (bne)

18

RISC-V assembly

 addi s0, zero, 4 # s0 = 0 + 4 = 4

 addi s1, zero, 1 # s1 = 0 + 1 = 1

 slli s1, s1, 2 # s1 = 1 << 2 = 4

 bne s0, s1, target # branch not taken

 addi s1, s1, 1 # s1 = 4 + 1 = 5

 sub s1, s1, s0 # s1 = 5 – 4 = 1

target:

 add s1, s1, s0 # s1 = 1 + 4 = 5

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Digital Design & Computer Architecture Architecture

Unconditional Branching (j)

19

RISC-V assembly
 j target # jump to target

 srai s1, s1, 2 # not executed

 addi s1, s1, 1 # not executed

 sub s1, s1, s0 # not executed

 target:

 add s1, s1, s0 # s1 = 1 + 4 = 5

Chapter 6: Architecture

Arrays

Digital Design & Computer Architecture Architecture

Arrays

22

• Access large amounts of similar data

• Index: access each element

• Size: number of elements

Digital Design & Computer Architecture Architecture

Arrays

23

• 5-element array

• Base address = 0x123B4780 (address of first
element, array[0])

• First step in accessing an array: load base
address into a register

123B478C

array[4]

123B4788

123B4784

123B4780

array[3]

array[1]

array[0]

Main Memory

Address Data

array[2]

123B4790

George York

Digital Design & Computer Architecture Architecture

Accessing Arrays of Characters

24

// C Code

 char str[80] = “CAT”; // all strings terminate with \0

 int len = 0;

 // compute length of string

 // while() will terminate on null character \0 at end of string

 while (str[len]) len++;

RISC-V assembly code

s0 = array base address, s1 = len

 addi s1, zero, 0 # len = 0

while: add t0, s0, s1 # address of str[len]

 lw t1, 0(t0) # load str[len]

 beq t1, zero, done # are we at the end of the string?

 addi s1, s1, 1 # len++

 j while # repeat while loop

done:

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Chapter 6: Architecture

Machine Language

Digital Design & Computer Architecture Architecture

S/B-Type

26

imm11:5 rs2 rs1 imm4:0 op S-Typefunct3

imm12,10:5 rs2 rs1 imm4:1,11 op

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

B-Typefunct3

31:25 24:20 19:15 14:12 11:7 6:0

• Store-Type

• Branch-Type

• Differ only in immediate encoding

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Digital Design & Computer Architecture Architecture

S-Type

27

• Store-Type

• 3 operands:
– rs1: base register

– rs2: value to be stored to memory

– imm: 12-bit two’s complement immediate

• Other fields:
– op: the opcode

– Simplicity favors regularity: all instructions have opcode

– funct3: the function (3-bit function code)

– with opcode, tells computer what operation to perform

imm11:5 rs2 rs1 imm4:0 op

S-Type

funct3

31:25 24:20 19:15 14:12 11:7 6:0

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Digital Design & Computer Architecture Architecture

S-Type Examples

28

sw t2, -6(s3)

sh s4, 23(t0)

Field Values Machine CodeAssembly

sb t5, 0x2D(zero)

imm11:5 rs2 rs1 imm4:0 opfunct3

1111 111 7 19 11010 352

imm11:5 rs2 rs1 imm4:0 opfunct3

1111 111 00111 10011 11010 010 0011010 (0xFE79AD23)

0000 000 10100 00101 10111 010 0011001 (0x01429BA3)

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

0000 001 11110 00000 01101 010 0011000 (0x03E006A3)

0000 000 20 5 10111 351

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

0000 001 30 0 01101 350

sw x7, -6(x19)

sh x20,23(x5)

sb x30,0x2D(x0)

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Digital Design & Computer Architecture Architecture

B-Type

29

imm12,10:5 rs2 rs1 imm4:1,11 op

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

funct3

B-Type
31:25 24:20 19:15 14:12 11:7 6:0

• Branch-Type (similar format to S-Type)

• 3 operands:
– rs1: register source 1

– rs2: register source 2

– imm12:1: 12-bit two’s complement immediate – address offset

• Other fields:
– op: the opcode

– Simplicity favors regularity: all instructions have opcode

– funct3: the function (3-bit function code)

– with opcode, tells computer what operation to perform

George York

George York

George York

George York

George York

George York

George York

George York

Digital Design & Computer Architecture Architecture

B-Type Example

30

beq s0, t5, L1

Field Values Machine CodeAssembly

30 8 990 0000 000 11110 01000 1000 0 110 0011000 (0x01E40863)

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits7 bits 5 bits 5 bits 3 bits 5 bits 7 bits
 beq x8, x30, 16

imm12,10:5 rs2 rs1 imm4:1,11 opfunct3 imm12,10:5 rs2 rs1 imm4:1,11 opfunct3

0 0 0 0 0 0 0 0 1 0 0 0 0

12 11 10 9 8 7 6 5 4 3 2 1 0bit number

imm12:0 = 16

RISC-V Assembly

0x70 beq s0, t5, L1

0x74 add s1, s2, s3

0x78 sub s5, s6, s7

0x7C lw t0, 0(s1)

0x80 L1: addi s1, s1, -15

 L1 is 4 instructions (i.e., 16 bytes) past beq

1
2

3

4

0000 000 1000 0

• The 13-bit immediate encodes where to branch (relative
to the branch instruction)

• Immediate encoding is strange

• Example:

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Digital Design & Computer Architecture Architecture

Review: Instruction Formats

31

funct7 rs2 rs1 rd op

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

R-Typefunct3

imm11:0 rs1 rd op

imm11:5 rs2 rs1 imm4:0 op

imm31:12 rd op

funct3

funct3

imm12,10:5 rs2 rs1 imm4:1,11 opfunct3

imm20,10:1,11,19:12 rd op

20 bits 5 bits 7 bits

I-Type

S-Type

B-Type

U-Type

J-Type

George York

Digital Design & Computer Architecture Architecture

Example Program: RISC-V Assembly

32

10144: ff010113 func: addi sp,sp,-16

10148: 00112623 sw ra,12(sp)

1014c: 00812423 sw s0,8(sp)

10150: 00050413 mv s0,a0

10154: 00a58533 add a0,a1,a0

10158: 0005da63 bgez a1,1016c <func+0x28>

1015c: 00c12083 lw ra,12(sp)

10160: 00812403 lw s0,8(sp)

10164: 01010113 addi sp,sp,16

10168: 00008067 ret

1016c: fff58593 addi a1,a1,-1

10170: 00040513 mv a0,s0

10174: fd1ff0ef jal ra,10144 <func>

10178: 00850533 add a0,a0,s0

1017c: fe1ff06f j 1015c <func+0x18>

Address Machine Code RISC-V Assembly Code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

