
Lesson 26:

RV32I Branching

ECE 281

Digital Design and Computer Architecture Lecture Notes 

© 2021 Sarah Harris and David Harris
These notes may be used and modified for educational and/or 
non-commercial purposes so long as the source is attributed.

Modified for use by USAF Academy, 2025



Digital Design & Computer Architecture Architecture

Chapter 6 :: Topics
Videos

• Branches

• Conditional Statements & Loops

• Arrays

• Machine Language: I, S/B, U/J-Type Instr.

2

https://youtu.be/npONPosFIDA
https://youtu.be/LfD4n2buV9w
https://youtu.be/XQDKFlPE_mo
https://youtu.be/G7R3P6n4nAI
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Memory Operands
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Memory

5

• First, we’ll discuss word-addressable memory

• Then we’ll discuss byte-addressable memory

      RISC-V is byte-addressable
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Word-Addressable Memory
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• Each 32-bit data word has a unique 
address

RISC-V uses byte-addressable memory, which we’ll talk about next.

Word Address Data

00000003

00000002

00000001

00000000

width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

C D 1 9 A 6 5 B00000004

Word 3

Word 2

Word 1

Word 0

Word 4

Word Number
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Reading Word-Addressable Memory
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• Memory read called load

• Mnemonic: load word (lw)
• Format:

 lw t1, 5(s0)

 lw destination, offset(base)

• Address calculation:
– add base address (s0) to the offset (5)

– address = (s0 + 5)

• Result:
– t1 holds the data value at address (s0 + 5)

                                       Any register may be used as base address
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Reading Word-Addressable Memory
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• Example: read a word of data at memory 
address 1 into s3
– address = (0 + 1) = 1

– s3 = 0xF2F1AC07 after load

Assembly code
lw s3, 1(zero) # read memory word 1 into s3

Word Address Data

00000003

00000002

00000001

00000000

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

C D 1 9 A 6 5 B00000004

Word 3

Word 2

Word 1

Word 0

Word 4

Word Number
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Writing Word-Addressable Memory
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• Memory write is called a store

• Mnemonic: store word (sw)
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Writing Word-Addressable 
Memory
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• Example: Write (store) the value in t4 into 
memory address 3 
– add the base address (zero) to the offset (0x3) 

– address: (0 + 0x3) = 3

– for example, if t4 holds the value 0xFEEDCABB, then after this 
instruction completes, word 3 in memory will contain that value

Assembly code
sw t4, 0x3(zero)  # write the value in t4 

                  # to memory word 3

Word Address Data

00000003

00000002

00000001

00000000

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

C D 1 9 A 6 5 B00000004

Word 3

Word 2

Word 1

Word 0

Word 4

Word Number

Offset can be 
written in 
decimal 
(default) or 
hexadecimal

Word Address Data

00000003

00000002

00000001

00000000

F E E D C A B B

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

C D 1 9 A 6 5 B00000004

Word 3

Word 2

Word 1

Word 0

Word 4

Word Number
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Byte-Addressable Memory
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• Each data byte has a unique address

• Load/store words or single bytes: load byte (lb) 
and store byte (sb) 

• 32-bit word = 4 bytes, so word address increments 
by 4

Word Address Data

0000000C

00000008

00000004

00000000

width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

Word 3

Word 2

Word 1

Word 0

Byte Address

MSB

F E D C

B A 9 8

7 6 5 4

3 2 1 0

C D 1 9 A 6 5 B13 12 11 10 00000010 Word 4

LSB

Word Number
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Reading Byte-Addressable Memory
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• The address of a memory word must now be 
multiplied by 4.  For example,
– the address of memory word 2 is 2 × 4 = 8

– the address of memory word 10 is 10 × 4 = 40  (0x28)

• RISC-V is byte-addressed, not word-addressed
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Reading Byte-Addressable Memory
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• Example: Load a word of data at memory 
address 8 into s3.

• s3 holds the value 0x1EE2842 after load
RISC-V assembly code
lw s3, 8(zero)  # read word at address 8 into s3

Word Address Data

0000000C

00000008

00000004

00000000

width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

Word 3

Word 2

Word 1

Word 0

Byte Address

MSB

F E D C

B A 9 8

7 6 5 4

3 2 1 0

C D 1 9 A 6 5 B13 12 11 10 00000010 Word 4

LSB

Word Number
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Writing Byte-Addressable Memory
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• Example: store the value held in t7 into memory address 
0x10 (16)
– if t7 holds the value 0xAABBCCDD, then after the sw completes, 

word 4 (at address 0x10) in memory will contain that value

Word Address Data

0000000C

00000008

00000004

00000000

width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

Word 3

Word 2

Word 1

Word 0

Byte Address

MSB

F E D C

B A 9 8

7 6 5 4

3 2 1 0

C D 1 9 A 6 5 B13 12 11 10 00000010 Word 4

LSB

Word Number

RISC-V assembly code
sw t7, 0x10(zero)  # write t7 into address 16

Word Address Data

0000000C

00000008

00000004

00000000

width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

Word 3

Word 2

Word 1

Word 0

Byte Address

MSB

F E D C

B A 9 8

7 6 5 4

3 2 1 0

A A B B C C D D13 12 11 10 00000010 Word 4

LSB

Word Number



Chapter 6: Architecture

Branches & Jumps
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Branching
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• Execute instructions out of sequence
• Labels indicate instruction location. They can’t be 

reserved words and must be followed by a colon (:)
• Types of branches:

– Conditional
• branch if equal (beq)
• branch if not equal (bne)
• branch if less than (blt)
• branch if greater than or equal (bge)

– Unconditional
• jump (j)
• jump register (jr)
• jump and link (jal)
• jump and link register (jalr)

We’ll talk 
about these 
when discuss 
function calls
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The Branch Not Taken (beq)
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# RISC-V assembly  

   addi s0, zero, 4         # s0 = 0 + 4 = 4

   addi s1, zero, 1         # s1 = 0 + 1 = 1

   slli s1, s1, 2           # s1 = 1 << 2 = 4

   beq  s0, s1, target   # branch to label

   addi s1, s1, 1        # not executed

   sub  s1, s1, s0    # not executed

target:

   add  s1, s1, s0    # s1 = 4 + 4 = 8
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The Branch Not Taken (bne)
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# RISC-V assembly  

   addi s0, zero, 4         # s0 = 0 + 4 = 4

   addi s1, zero, 1         # s1 = 0 + 1 = 1

   slli s1, s1, 2           # s1 = 1 << 2 = 4

   bne  s0, s1, target   # branch not taken

   addi s1, s1, 1        # s1 = 4 + 1 = 5

   sub  s1, s1, s0    # s1 = 5 – 4 = 1

target:

   add  s1, s1, s0    # s1 = 1 + 4 = 5
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Unconditional Branching (j)
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# RISC-V assembly
  j        target      # jump to target

   srai     s1, s1, 2       # not executed

   addi     s1, s1, 1       # not executed

   sub      s1, s1, s0  # not executed

  target:

   add  s1, s1, s0  # s1 = 1 + 4 = 5



Chapter 6: Architecture

Arrays
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Arrays
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• Access large amounts of similar data

• Index: access each element

• Size: number of elements
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Arrays

23

• 5-element array

• Base address = 0x123B4780 (address of first 
element, array[0])

• First step in accessing an array: load base 
address into a register

123B478C

array[4]

123B4788

123B4784

123B4780

array[3]

array[1]

array[0]

Main Memory

Address Data

array[2]

123B4790

George York
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Accessing Arrays of Characters
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// C Code

 char str[80] = “CAT”;  // all strings terminate with \0

 int len = 0;

 // compute length of string

 // while() will terminate on null character \0 at end of string

   while (str[len]) len++;

# RISC-V assembly code

# s0 = array base address, s1 = len

        addi s1, zero, 0        # len = 0

while:  add t0, s0, s1        # address of str[len]

        lw t1, 0(t0)             # load str[len]

        beq  t1, zero, done      # are we at the end of the string?

        addi s1, s1, 1           # len++

        j while                  # repeat while loop

done:
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Machine Language
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S/B-Type
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imm11:5 rs2 rs1 imm4:0 op S-Typefunct3

imm12,10:5 rs2 rs1 imm4:1,11 op

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

B-Typefunct3

31:25 24:20 19:15 14:12 11:7 6:0

• Store-Type

• Branch-Type

• Differ only in immediate encoding
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S-Type
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• Store-Type

• 3 operands:
– rs1: base register

– rs2: value to be stored to memory

– imm: 12-bit two’s complement immediate

• Other fields:
– op: the opcode

– Simplicity favors regularity: all instructions have opcode

– funct3: the function (3-bit function code)

– with opcode, tells computer what operation to perform

imm11:5 rs2 rs1 imm4:0 op

S-Type

funct3

31:25 24:20 19:15 14:12 11:7 6:0

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits
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S-Type Examples
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sw t2, -6(s3)

sh s4, 23(t0)

Field Values Machine CodeAssembly

sb t5, 0x2D(zero)

imm11:5 rs2 rs1 imm4:0 opfunct3

1111 111 7 19 11010 352

imm11:5 rs2 rs1 imm4:0 opfunct3

1111 111 00111 10011 11010 010 0011010 (0xFE79AD23)

0000 000 10100 00101 10111 010 0011001 (0x01429BA3)

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

0000 001 11110 00000 01101 010 0011000 (0x03E006A3)

0000 000 20 5 10111 351

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

0000 001 30 0 01101 350

sw x7, -6(x19)

sh x20,23(x5)

sb x30,0x2D(x0)
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B-Type

29

imm12,10:5 rs2 rs1 imm4:1,11 op

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

funct3

B-Type
31:25 24:20 19:15 14:12 11:7 6:0

• Branch-Type (similar format to S-Type)

• 3 operands:
– rs1: register source 1

– rs2: register source 2

– imm12:1: 12-bit two’s complement immediate – address offset

• Other fields:
– op: the opcode

– Simplicity favors regularity: all instructions have opcode

– funct3: the function (3-bit function code)

– with opcode, tells computer what operation to perform
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B-Type Example

30

beq s0, t5,  L1

Field Values Machine CodeAssembly

30 8 990 0000 000 11110 01000 1000 0 110 0011000 (0x01E40863)

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits7 bits 5 bits 5 bits 3 bits 5 bits 7 bits
 beq x8, x30, 16

imm12,10:5 rs2 rs1 imm4:1,11 opfunct3 imm12,10:5 rs2 rs1 imm4:1,11 opfunct3

0    0  0  0 0   0 0 0 1   0 0 0 0

12   11 10 9 8   7 6 5 4   3 2 1 0bit number

imm12:0 = 16

# RISC-V Assembly   

0x70     beq  s0, t5, L1

0x74     add  s1, s2, s3

0x78     sub  s5, s6, s7

0x7C     lw   t0, 0(s1)

0x80 L1: addi s1, s1, -15

   L1 is 4 instructions (i.e., 16 bytes) past beq

1
2

3

4

0000 000 1000 0

• The 13-bit immediate encodes where to branch (relative 
to the branch instruction)

• Immediate encoding is strange

• Example:
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Review: Instruction Formats
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funct7 rs2 rs1 rd op

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

R-Typefunct3

imm11:0 rs1 rd op

imm11:5 rs2 rs1 imm4:0 op

imm31:12 rd op

funct3

funct3

imm12,10:5 rs2 rs1 imm4:1,11 opfunct3

imm20,10:1,11,19:12 rd op

20 bits 5 bits 7 bits

I-Type

S-Type

B-Type

U-Type

J-Type
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Example Program: RISC-V Assembly
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10144: ff010113 func: addi sp,sp,-16

10148: 00112623       sw   ra,12(sp)

1014c: 00812423       sw   s0,8(sp)

10150: 00050413       mv   s0,a0

10154: 00a58533       add  a0,a1,a0

10158: 0005da63       bgez a1,1016c <func+0x28>

1015c: 00c12083       lw   ra,12(sp)

10160: 00812403       lw   s0,8(sp)

10164: 01010113       addi sp,sp,16

10168: 00008067       ret

1016c: fff58593       addi a1,a1,-1

10170: 00040513       mv   a0,s0

10174: fd1ff0ef       jal  ra,10144 <func>

10178: 00850533       add  a0,a0,s0

1017c: fe1ff06f       j    1015c <func+0x18>

Address   Machine Code             RISC-V Assembly Code
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