ECE 281

Chapter 6 :: Topics

Videos

Branches
Conditional Statements & Loops

Arrays

Machine Lanquaoe=T, S/B, U/J-Type Instr.

‘S—<

Lesson Topic

26

27

28

29

30

31

RV321 U-, 5-, B-Type Instructions

ICES - Basic Elevator Controller

ICE6 - Time Division Multiplexing
Lab 4 - Moore Elevator Controller
Lab 4 - Moore Elevator Controller

GR #2

Reading

6.3.3-6.3.6, 6.4.3-

Assigned

Lab 4
Prelab

HW 30

Due

Lab 3

ICES

ICEG, Lab 4 Prelab

Lab 4

Application
Software

>"hello

world!”

Operating
Systems

Micro-
architecture

Logic

Digital
Circuits

Analog
Circuits

Devices

Physics

https://youtu.be/npONPosFIDA
https://youtu.be/LfD4n2buV9w
https://youtu.be/XQDKFlPE_mo
https://youtu.be/G7R3P6n4nAI
George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

@

Memory Operands

D

RISC-V is byte-addressable

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Word-Addressable Memory

e Each 32-bit data word has a unique
address

Word Address Data Word Number

00000004 | CD|1 9/A 6|5 B| Word 4
00000003 |4 O|F 3|0 7|8 8| Word 3
00000002 |0 1|E E|2 8|4 2| Word 2
00000001 |F 2|F 1|A C|0 7/ Word1

00000000, |A B|C D|E F| 7 8 Word O

-« >
width = 4 bytes

RISC-V uses byte-addressable memory, which we’ll talk about next.

George York

George York

Reading Word-Addressable Memory

e Memory read called load
¢ Mnemonic: load word (]_W) &— I‘%ﬁ Tnsteudhon

o Format: . +\ c - (§0+§>
w1, (500))

lw destination, offset (base) / |
e Address calculation: gold [IL__{ber
°{0 _|ofA
— add base address (s0) to the offset (5) g:{;_r 2;2
— address =(s0 +5) Foos T [wei
Jor —> ¥oo - I
e Result: ’ 'L\—J“"J

— t1 holds the data value at address (s0 + 5)

Any register may be used as base address

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Reading Word-Addressable Memory

e Example: read a word of data at memory
address 1 into s3
— address=(0+1)=1

— 53 =0xF2F1ACO7 after load

Assembly code
lw s3, 1(zero)

read memory word 1 into s3

Word Addressl

00000004
00000003
00000002
00000001
00000000

Data

Word Number

19

A b

5B

Word 4

F 3

0 7

8 8

Word 3

EE

2 8

4 2

Word 2

F

AC

———

07

DWord 1

CD

EF

7 8

Word 0

George York

George York

Writing Word-Addressable Memory

e Memory write is called a store
e Mnemonic: store word (sw)

Writing Word-Addressable

e Example: Write (store) the value in £t 4 into

memory address 3

add the base address (zero) to the offset (0x3)
address: (0 + 0x3) =

for example, if t4 holds the value OXFEEDCABB, then after this
instruction completes, word 3 in memory will contain that value

Offset can be
written in
decimal
(default) or
hexadecimal

Assembly code

3

sw t4, 0x3(zero)

write the value in t4
to memory word 3

Word Number

Word Addressl Data
00000004 |C D|1 9|A 6|5 B
00000003 |FE|/E DIC A BB
00000002 O1|EE|2 8|4 2
00000001 |F 2|F 1|A C|O 7
00000000 |A B|C D|E F|7 8

Word 4
Word 3
Word 2
Word 1
Word 0

Byte-Addressable Memory

e Each data byte has a unique address

e Load/store words or single bytes: load byte (1b)
and store byte (sb)

e 32-bit word = 4 bytes, so word address increments

Byte Address IWord Address

by 4
1312 11|10
F E D C
B|A| 9| 8
7 6 | 5
3| 2 1 0

00000010
0000000C
00000008
00000004
00000000

Data

Word Number

CD

19

A ©

5B

4 0

F 3

0 7

8 8

01

EE

2 8

4 2

F 2

F1

A C

0 7

A B

CD

EF

7 8

-«

>

width = 4 bytes

Word 4
Word 3
Word 2
Word 1
Word 0

Jw 1, 0xc 7
e tho ©

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Reading Byte-Addressable Memory

e The address of a memory word must now be
multiplied by 4. For example,

— the address of memory word 2is2 x4 =8
— the address of memory word 10 is 10 X 4 =40 (0x28)

Wte-addressed, not word-add@

George York

Reading Byte-Addressable Memory

e Example: Load a word of data at memory
address 8 into s 3.

e 53 holds the value Ox1EE2842 after load

RISC-V assembly code

lw s3, 8(zero) # read word at address 8 into s3

Byte Address IWord Addressl Data Wprd Number
1312 |11 | 10 00000010 |C D|1 9|A 6|5 B| Word 4

F | E| D/ |C 0000000C |4 O|F 3|0 7|8 8] Word 3

B| A |9 00000008 |01/ EE|2 8/4 2] Word 2

7| 6|5 00000004 |F 2(F 1|A C|0 7/ Word 1
312 1,0 00000000 |A B/CD|E F|7 8 WordO
MSB LSB < >

width = 4 bytes

Writing Byte-Addressable Memory

e Example: store the value held in £7 into memory address

0x10 (16

— if £7 holds the value OXAABBCCDD, then after the sw completes,

)

word 4 (at address 0x10) in memory will contain that value

RISC-V assembly code

sw t7,

0x10 (zero)

13|12 | 11 | 10
F| E D |C
B| A |9
7] 6|5
32|10
MSB LSB

Byte Address Word Address

00000010
0000000C
00000008
00000004
00000000

Data

Word Number

A A

BB

ccC

DD

4 0

F 3

0 7

8 8

01

EE

2 8

4 2

F 2

F1

A C

0 7

A B

CD

E F

78

-«

>

width = 4 bytes

write t7 into address 16

Word 4
Word 3
Word 2
Word 1
Word 0

Branches & Jumps

* Execute instructions out of sequence

e Labels indicate instruction location. They can’t be
reserved words and must be followed by a colon (:)

C-Qou
/—1/
g s0=x= sl
5\ Z 49 ‘\'5\’

* Types of branches:

1 z1)

* branch if equal (beq) |
* branch if not equal (bne) tlst
* branch if less than (b1t) sl ¢ (SH'\3 - s0;

* branchif greater than or equal (bge) Negr: v
=

* jump (J)

e jump register (jr)

e jump and link (7a1l)

e jump and link register (jalr)

we'll talk
about these
when discuss
function calls

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

The Branch Not Taken (beq)

RISC-V assembly

addi s0, zero, 4 # sO0 =0+ 4 =4
addi sl, zero, 1 # s1 =0+ 1 =1
slli sl, sl1, 2 # s1 =1 << 2 =4
beqg sO, sl, target # branch to label
addi sl, s1, 1 # not executed
sub sl, sl1, sO # not executed
. 1)
S New
target:
add sl, sl1, sO # s1 =4 + 4 = 8
nextt A~
ANA
SNA™

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

g604
§00%
400 C
¢o\o
5614
5618

O\
§020

sl,

sO

S = 3= = = S

sO =0 + 4
sl = 0 + 1
sl = 1 << 2
branch not
sl =4 + 1
sl =5 — 4
sl =1 + 4

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Unconditional Branching (7)

RISC-V assembly

J target # jump to target

srai sl, sl1l, 2 # not executed

addi sl, s1, 1 # not executed

sub sl, sl1, sO # not executed
target:

add sl, sl1, sO # s1 =1 + 4 =5

Chapter 6: Architecture

e Access large amounts of similar data

e |[ndex: access each element

e Size: number of elements

e 5-element array

e Base address = 0x123B4780 (address of first

element, array[0])

* First step in accessing an array: load base

address into a register

A

Address

123B4790
123B478C
123B4788
123B4784
123B4780

Data

/

Main Memory

George York

Accessing Arrays of Characters

// C Code
—— char str[80] = “CAT”; // all strings terminate with \O
dwel 2 i - 00
qoog | T f
oo A |
¢joon | C | // compute length of string

// while () will terminate on null character \0 at end of string
while (str[len]) lent++;
qow
RISC-V assembly code

s0 = array base address, sl = len

while: add t0, s0, sl address of str[len]
1w tl, 0(t0) load str[len]
beg tl, zero, done are we at the end of the string?
addi sl1, s1, 1 len++
J while

H = H =

repeat while loop

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

@

Machine Language

D

e Store-Type
e Branch-Type
e Differ only in immediate encoding

31:25 24:20 19:15 14:12 11:7 6:0 ‘/

immy.s | rs2 | rsl |funct3 | immy. op | S-Type

iMM12105| rs2 | rsl |[funct3 [imms.iq11] Op B-Type
7 bits 5bits 5bits 3 bits 5 bits 7 bits &

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

S-Type

e Store-Type
e 3 operands:

oﬁv\)‘” e , awﬂ‘”

- base register &~ @
- rs2: value to be stored to memory
— imm: 12-bit two’s complement immediate

e QOther fields:

- op: the opcode

=1 Z:(‘“5l 1 "WMQ

— Simplicity favors regularity: all instructions have opcode

— funct3: the function (3-bit function code)

— with opcode, tells computer what operation to perform

S-Type
31:25 24:20 19:15 14:12 11:7 6:0
MMy 1.5 ﬁs@ rsl |funct3 | immyg op
7 bits 5bits 5bits 3 bits 5 bits 7 bits

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

S-Type Examples

Assembly
S'h"- WJ sw

sheve holé

23(t0)

werd ,23(x5)

Stort La*" sb t5, 0x2D (zero)
sb x30,0x2D (x0)

immy 15

rs2

Field Values

Machine Code

010 0011|| (0xFE79AD23)

(0x01429BA3)

010 0011}{ (0xO3E006A3)

rsl funct3 immgsg op immyys rs2 rsl ftﬂc‘t_g immy. op
1111111 | 7 19 2 11010 35 1111111 |00111|10011f 010\ | 11010
0000 000 | 20 5 1 10111 35 0000 000 [10100(00101|f 001 || 10111 /0100011
0000001 | 30 0 0 01101 35 0000 001 {11110|00000 LO_OO 01101 L
7 bits 5 bits 5bits 3 bits 5 bits 7 bits 7 bits 5bits 5bits 3 bits 5 bits 7 bits

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

B-Type

* Branch-Type (similar format to S-Type)

e 3 operands:

- rsl. register source 1
- rs2. register source 2

imm,,.;: 12-bit two’s complement immediate — address offset

e QOther fields:

- op: the opcode

— Simplicity favors regularity: all instructions have opcode
— funct3: the function (3-bit function code)
— with opcode, tells computer what operation to perform

B-Type
31:25 24:20 19:15 14:12 11:7 6:0
IMMy 105 rS2 | rsl |funct3 [immyg.q 11| Op
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

George York

George York

George York

George York

George York

George York

George York

George York

B-Type Example

e The 13-bit immediate encodes where to branch (relative HZ p
to the branch instruction X
. . .) C‘ﬁﬂ\qyf 'FD 4’35
e Immediate encoding is strange Pe Py
e Example: Iy frine reletet sddr
RISC-V Assembly
0x70 begq s0, t5, L1)1
0x74 add sl1, s2, s3)2
0x78 sub sb5, s6, s7 3
0x7C 1w to,)
0x80 Ll: addi sl1, sl —l5>4
L1 is 4 instructions (i.e., 16 bytes) past beqg j‘:\\"é'\' l L\i\' ov Zb\+§ 7
| D ()
Immqyo=16 0 0O 0 00O 0001 000D
bit number 12 11 10 9 8 7 6 5 4 3210
Assembly Field Values Machine Code
imMMy,105 rs2 rsl funct3 immgyq; Op imMmiz10s rs2 rsl funct3 immgy31 Op
pea =0 5 %1 | 0000000 30 | 8 | o | 10000 | 99 ||000000011110/01000] 000 | 10000 [1100011] (0x01E40863)
4 ' 7bits 5bits 5bits 3bits 5bits 7 bits 7bits 5bits S5bits 3bits 5bits 7 bits

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Review: Instruction Formats

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits [\—'
funct7 | rs2 | rsl |funct3| rd op |[|R-Type
immyy.o rsl |funct3 rd op I-Type
immys | rs2 | rs1 |funct3 | immy,g op |S-Type
imMM1s105| rs2 | rsl |funct3 |imma.111| Op B-Type
IMM31-12 rd op U'Ty oe
IMM2010:1,11,19:12 rd op J-Type
20 bits 5 bits 7 bits

George York

Example Program: RISC-V Assembly

Address Machine Code

RISC-V Assembly Code

10144: £f010113 func: addi sp,sp,-16

10148: 00112623 SW ra,12 (sp)

1014c: 00812423 SW s0, 8 (sp)

10150: 00050413 mv s0, a0

10154: 00ab8533 add a0,al, a0

10158: 0005da63 bgez al,1016c <func+0x28>
1015c: 00c12083 1w ra,12 (sp)

10160: 00812403 1w s0, 8 (sp)

10164: 01010113 addi sp,sp, 16

10168: 00008067 ret

1016c: f£££58593 addi al,al, -1

10170: 00040513 mv a0, s0

10174: f£dlffOef Jal 1ra,10144 <func>
10178: 00850533 add a0,a0, s0

1017c: felffOo6f 7 1015¢c <func+0x18>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

