Lesson 14:
RV32l, R- and I-Type Instructions

Digital Design and Computer Architecture Lecture Notes

© 2021 Sarah Harris and David Harris
These notes may be used and modified for educational and/or
non-commercial purposes so long as the source is attributed.

Modified for use by USAF Academy, 2025




Chapter 6 :: Topics

* Introduction

* Assembly Language
* Programming
 Machine Language
* Addressing Modes

* Lights, Camera,
Action: Compiling,
Assembly, & Loading

e Odds & Ends

Videos

* Introduction

* |nstructions

 Operands

* Immediates (Constants)

* Logical Instructions

* Machine Language: R-Type
Instruction Formats

NTAYAS

Application
Software

Operating
Systems

Micro-
architecture

Logic

Digital
Circuits

Analog
Circuits

Devices

Physics



https://youtu.be/7tM4XkqoFro
https://youtu.be/SdjPQtMPPmo
https://youtu.be/7_o_ypB5XDY
https://youtu.be/zO6JiJ_BBkI
https://youtu.be/gW5tdyS6ONE
https://youtu.be/jv3JZ94E0LM
https://youtu.be/jv3JZ94E0LM
https://pages.hmc.edu/harris/ddca/ddcarv/DDCArv_AppB_Harris.pdf
George York




* Instructions: commands in a computer’s language
— Assembly language: human-readable format of instructions
— Machine language: computer-readable format (1's and 0’s)

e RISC-V architecture:

— Pronounced “Risk Five”

— Developed by Krste Asanovic, David Patterson and their colleagues
at UC Berkeley in 2010.
— First widely accepted open-source computer architecture

Once you’ve learned one architecture, it’s easier to learn others (ECE 382 - ARM)

Digital Design & Computer Architecture Architecture



Chapter 6: Architecture




Instructions: Addition

C Code RISC-V assembly code

a =b + c; add a, b, c

e add: mnemonic indicates operation to perform

b, c: source operands (on which the operation is performed)

e a: destination operand (to which the result is written)



George York




Instructions: Subtraction

Similar to addition - only mnemonic changes

C Code RISC-V assembly code
a =b - c; sub a, b, c

e sub: mnemonic

e b, c: source operands

e a: destination operand




Chapter 6: Architecture




 Operand location: physical location
In computer

— Registers

— Memory
— Constants (also called immediates)




Operands: Registers

We will go in-depth into how to make a register
in later lessons ©

e RISC-V has 32 32-bit registers

e Registers are faster than memory

e RISC-V called “32-bit architecture” because it
operates on 32-bit data

Smaller is Faster
* RISC-V includes only a small number of registers




RISC-V Register Set

Register Number

x0 Constant value O
ra x1 Return address
sp X2 Stack pointer
gp X3 Global pointer
tp x4 Thread pointer
—» [’E-O—:T—’;S-7 Temporaries
s0/fp X8 ( Saved register / Frame pointer
fhoes ok sl X9 \ Saved register
— | |a0-1 x10-11 Function arguments / return values
a2-7 x12-17 Function arguments
s2-11 x18-27 Saved registers
\ t3-6 x28-31 Temporaries



George York



George York



George York



George York



George York



George York



George York



George York



George York



George York



George York



George York



George York




e Registers:

— Can use either name (i.e., ra, zero) or x0, x1, etc.
— Using name is preferred

e Registers used for specific purposes:
 zero always holds the constant value 0.
e the saved registers, sO-s11, used to hold variables

e the temporary registers, t 0—t 6, used to hold intermediate values
during a larger computation

e arguments are passedin a0-a7 &returnedinal-al
e Discuss others later; until we get to function calls just use t0-t 6

17 Digital Design & Computer Architecture Architecture



Instructions with Registers

e Revisit add instruction

C Code RISC-V assembly code
# sO0 = a, sl = Db, s2 = c¢
a =>b + c; add s0, sl1, s2

# indicates a single-line comment




Instructions with Constants

e addi instruction

C Code RISC-V assembly code
# sO = a, s1 =D
a =>b + 06; addi s0, sl1, ©




@

<

Generating Constants

D

4




Generating 12-Bit Constants

e 12-bit signed constants (immediates) using addi:

C Code RISC-V assembly code
// int 1s a 32-bit signed word # sO0 = a, sl = Db
int a = =-372; addi s0, zero, -372
int b = a + 6; addi sl1, s0, ©

Any immediate that needs more than 12 bits cannot use
this method.




Generating 32-bit Constants

e Use load upper immediate (1ui) and addi

e lui: putsanimmediate in the upper 20 bits of
destination register and O’s in lower 12 bits

C Code RISC-V assembly code
# sO0 = a
int a = OxFEDC8765; lui s0, OxFEDCS8

addi s0, s0, 0x765

Remember that addi sign-extends its 12-bit immediate




Load Immediate Pseudoinstrcution

Table B.7 RISC-V pseudoinstructions

Pseudoinstruction RISC-V Instructions Description Operation
nop addi  x0, x0, O no operation
11 rd,  immy.g addi rd, x0, immy.q load 12-bit immediate rd = Signkxtend(immyy.q)
11 rd,  imms. Tui  rd,  immag, load 32-bit immediate rd = imm.g
addi rd, rd, immp.g



George York




Logical / Shift
Instructions




Logical Instructions: Example 1

Assembly Code
and s3, sl, s2

or s4, sl, s2

xor s5, sl, s2

sl
s2

s3
s4
sb

Source Registers

0100 0110

1010 0001 | 1111 0001

1011 0111

1111 1111

1111 1111 | OO00 0000

0000 0000

Result

0100 0110

1010 0001 | 0OO0 0000

0000 0000

1111 1111

1111 1111 | 1111 0001

1011 0111

1011 1001

0101 1110 | 1111 0001

1011 0111




Logical Instructions: Example 2

Source Values

t3 |0011/1010/0111/0101/0000/1101/0110j1111

imm (1111/1111/1111{1111|1111{1010{0011/0100
<4— sign-extended ——»

Assembly Code Result
andi sb, t3, -1484 sb
ori so, t3, -1484 s6
xori s7, t3, -1484 s7

-1484 = 0xA34 in 12-bit 2's complement representation.




Shift Instructions

Shift amount is in (lower 5 bits of) a register

e sl11: shiftleftlogical

— Example: s11 tO,

t1,

t2 # t0

e srl: shiftrightlogical

— Example: srl tO,

tl,

t2 # t0

e sra: shiftright arithmetic

— Example: sra tO,

tl,

t2 # tO

tl << t2

tl >> t2

tl >>> t2



Immediate Shift Instructions

Shift amount is an immediate between 0 to 31

e sl1li: shiftleftlogical immediate
— Example: s11i t0, tl, 23 # t0 = tl << 23

« srli: shiftrightlogical immediate
— Example: sr1i t0O, tl, 18 # t0 = tl >> 18

e srai: shiftright arithmetic immediate
— Example: srai t0, tl1, 5 # t0 = tl >>> 5




@

Machine Language

D




Machine Language

You will need to be able to write machine code, but not yet
* Binary representation of instructions

 Computers only understand 1’s and 0’s

* 32-bit instructions
— Simplicity favors regularity: 32-bit data & instructions

* 4 Types of Instruction Formats:
— R-Type
— |-Type
— S/B-Type
— U/J-Type

30 Digital Design & Computer Architecture  Architecture




R-Type

e Register-type
e 3 register operands:

- rsl, rs2: source registers

- rd: destination register
e Other fields:

- op: the operation code or opcode

— funct’/, funct3:
the function (7 bits and 3-bits, respectively)
with opcode, tells computer what operation to perform

R-Type
31:25 24:20 19:15 14:12 11:7 6:0
funct7 | rs2 | rsl |funct3 rd op
7 bits 5bits 5 bits 3 bits 5 bits 7 bits




m_m

sub
and
or
addi
beq
bne
1w
sSwW
jal
jalr

lui

0110011 (51)
0110011 (51)
0110011 (51)
0110011 (51)
0010011 (19)
1100011 (99)
1100011 (99)
0000011 (3)

0100011 (35)
1101111 (111)
1100111 (103)
0110111 (55)

000 (0)
000 (0)
111 (7)
110 (6)
000 (0)
000 (0)
001 (1)
010 (2)
010 (2)

000 (0)

Instruction Fields & Formats

0000000 (0)
0100000 (32)
0000000 (0)
0000000 (0)

R-Type
R-Type
R-Type
R-Type
|-Type
B-Type
B-Type
|-Type
S-Type
J-Type
|-Type
U-Type

See Appendix B for other instruction encodings



R-Type Examples

Assembly Field Values Machine Code
funct7 rs2 rsl funct3 rd op funct7 rs2 rsl funct3 rd op
dd s2, s3, s4
:dd :13,:19,:20 0 20 | 19 0 18 51 0000,000 [10100,10011| 000, | 10010 |0110011| (0x01498933)

sub t0, t1, t2 32 7 6 0 5 51 0100,000 |00111,00110| 000, | 00101 0110011 (0x407302B3)
sub x5, x6, x7

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits 7 bits 5 bits 5 bits 3 bits 5 bits 7 bits




I-Type

e mmediate-type
e 3 operands:

- rsl: register source operand

- rd: register destination operand

—  imm: 12-bit two’s complement immediate
e Other fields:

- op: the opcode

— Simplicity favors regularity: all instructions have opcode
— funct3: the function (3-bit function code)
— with opcode, tells computer what operation to perform

I-Type
31:20 19:15 14:12 11:7 6:0
IMMy1-o rsl |funct3 rd op
12 bits 5bits 3 bits 5 bits 7 bits




I-Type Examples

Assembly Field Values Machine Code
immjy .o rsl1 funct3 rd op imMy1. rs1 funct3 rd op
addi s0, sl1, 12
addi x8, x9, 12 12 9 0 8 19 0000 0000 1100 [01001| 000 |01000| 0010011 | (0x00C48413)
addi s2, tl1l, -14
add; x18,x6. -14 -14 6 0 18 19 11111111 0010 |00110| 000 |10010| 0010011 | (0xFF230913)
1w  t2, -6(s3) -6 19 2 7 3 11111111 1010 |10011| 010 |00111| 0000011 | (OXFFA9A383)
1w x7, -6(x19)
lh  s1, 27(zero) 27 0 1 9 3 0000 0001 1011 |00000| 001 |01001| 0000011 | (0x01B01483)
lh  x9, 27(x0)
lb s4, Ox1F(s4) Ox1F 20 0 20 3 0000 0001 1111 {10100/ 000 |10100| 000 0011 | (0Ox01FAOAO03)

1b x20,0x1F (x20)

12 bits 5 bits 3 bits 5 bits 7 bits 12 bits 5 bits 3 hits 5 bits 7 bits




Design Principle 4

Good design demands good compromises

* Multiple instruction formats allow flexibility
- add, sub: use 3 register operands

- 1w, sw, addi: use 2 register operands and a
constant

* Number of instruction formats kept small

- to adhere to design principles 1 and 3
(simplicity favors regularity and smaller is
faster).




Venus RV32l Simulator

.text
# Example for register inspection
addi t0, tO, 2016 # init tO to 2016

ecall # Exit

Exercise 6.7 The nor instruction is not part of the RISC-V instruction set
because the same functionality can be implemented using existing instructions.

Write a short assembly code snippet that has the following functionality: s3 = s4

NOR s5. Use as few instructions as possible.

text

# your code here

ecall # Exit

1i s4, s4, 0bl010 # init s4
1i s5, s5, 0Obl1l100 # init s5



https://venus.kvakil.me/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

