
Lesson 14:

RV32I, R- and I-Type Instructions

ECE 281

Digital Design and Computer Architecture Lecture Notes

© 2021 Sarah Harris and David Harris
These notes may be used and modified for educational and/or
non-commercial purposes so long as the source is attributed.

Modified for use by USAF Academy, 2025

Digital Design & Computer Architecture Architecture

Chapter 6 :: Topics

• Introduction

• Assembly Language

• Programming

• Machine Language

• Addressing Modes

• Lights, Camera,
Action: Compiling,
Assembly, & Loading

• Odds & Ends

2

Videos

• Introduction

• Instructions

• Operands

• Immediates (Constants)

• Logical Instructions

• Machine Language: R-Type

Instruction Formats

Appendix B: RV32I Instruction Set Summary.pdf (also front/back cover of your book!)

https://youtu.be/7tM4XkqoFro
https://youtu.be/SdjPQtMPPmo
https://youtu.be/7_o_ypB5XDY
https://youtu.be/zO6JiJ_BBkI
https://youtu.be/gW5tdyS6ONE
https://youtu.be/jv3JZ94E0LM
https://youtu.be/jv3JZ94E0LM
https://pages.hmc.edu/harris/ddca/ddcarv/DDCArv_AppB_Harris.pdf
George York

Digital Design & Computer Architecture Architecture

Assembly Language

• Instructions: commands in a computer’s language
– Assembly language: human-readable format of instructions

– Machine language: computer-readable format (1’s and 0’s)

• RISC-V architecture:
– Pronounced “Risk Five”

– Developed by Krste Asanovic, David Patterson and their colleagues
at UC Berkeley in 2010.

– First widely accepted open-source computer architecture

Once you’ve learned one architecture, it’s easier to learn others (ECE 382 → ARM)

4

Chapter 6: Architecture

Instructions

Digital Design & Computer Architecture Architecture

Instructions: Addition

8

• add: mnemonic indicates operation to perform

• b, c: source operands (on which the operation is performed)

• a: destination operand (to which the result is written)

C Code
a = b + c;

RISC-V assembly code
add a, b, c

George York

Digital Design & Computer Architecture Architecture

Instructions: Subtraction

9

Similar to addition - only mnemonic changes

• sub: mnemonic

• b, c: source operands

• a: destination operand

C Code
a = b - c;

RISC-V assembly code
sub a, b, c

Chapter 6: Architecture

Operands

Digital Design & Computer Architecture Architecture

Operands

14

• Operand location: physical location
in computer
– Registers

– Memory

– Constants (also called immediates)

Digital Design & Computer Architecture Architecture

Operands: Registers

15

We will go in-depth into how to make a register
in later lessons ☺

• RISC-V has 32 32-bit registers

• Registers are faster than memory

• RISC-V called “32-bit architecture” because it
operates on 32-bit data

Smaller is Faster

• RISC-V includes only a small number of registers

Digital Design & Computer Architecture Architecture

RISC-V Register Set

16

Name Register Number Usage

zero x0 Constant value 0

ra x1 Return address

sp x2 Stack pointer

gp x3 Global pointer

tp x4 Thread pointer

t0-2 x5-7 Temporaries

s0/fp x8 Saved register / Frame pointer

s1 x9 Saved register

a0-1 x10-11 Function arguments / return values

a2-7 x12-17 Function arguments

s2-11 x18-27 Saved registers

t3-6 x28-31 Temporaries

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

George York

Digital Design & Computer Architecture Architecture

Operands: Registers

17

• Registers:
– Can use either name (i.e., ra, zero) or x0, x1, etc.

– Using name is preferred

• Registers used for specific purposes:
• zero always holds the constant value 0.

• the saved registers, s0-s11, used to hold variables

• the temporary registers, t0-t6, used to hold intermediate values
during a larger computation

• arguments are passed in a0-a7 & returned in a0-a1

• Discuss others later; until we get to function calls just use t0-t6

Digital Design & Computer Architecture Architecture

Instructions with Registers

18

• Revisit add instruction

C Code

a = b + c;

RISC-V assembly code
s0 = a, s1 = b, s2 = c

add s0, s1, s2

indicates a single-line comment

Digital Design & Computer Architecture Architecture

Instructions with Constants

19

• addi instruction

C Code

a = b + 6;

RISC-V assembly code
s0 = a, s1 = b

addi s0, s1, 6

Chapter 6: Architecture

Generating Constants

Digital Design & Computer Architecture Architecture

Generating 12-Bit Constants

21

• 12-bit signed constants (immediates) using addi:

Any immediate that needs more than 12 bits cannot use
this method.

C Code
// int is a 32-bit signed word

int a = -372;

int b = a + 6;

RISC-V assembly code
s0 = a, s1 = b

addi s0, zero, -372

addi s1, s0, 6

Digital Design & Computer Architecture Architecture

Generating 32-bit Constants

22

• Use load upper immediate (lui) and addi

• lui: puts an immediate in the upper 20 bits of
destination register and 0’s in lower 12 bits

C Code

int a = 0xFEDC8765;

RISC-V assembly code
s0 = a

lui s0, 0xFEDC8

addi s0, s0, 0x765

Remember that addi sign-extends its 12-bit immediate

Digital Design & Computer Architecture Architecture

Load Immediate Pseudoinstrcution

23

George York

Chapter 6: Architecture

Logical / Shift
Instructions

Digital Design & Computer Architecture Architecture

Logical Instructions: Example 1

25

s1

Source Registers

ResultAssembly Code

and s3, s1, s2

or s4, s1, s2

xor s5, s1, s2

1111 1111 1111 1111 0000 0000 0000 0000

0100 0110 1010 0001 1111 0001 1011 0111

s2

0100 0110 1010 0001 0000 0000 0000 0000

1111 1111 1111 1111 1111 0001 1011 0111

1011 1001 0101 1110 1111 0001 1011 0111

s3

s4

s5

Digital Design & Computer Architecture Architecture

Logical Instructions: Example 2

26

-1484 = 0xA34 in 12-bit 2’s complement representation.

0011 1010 0111 0101 0000 1101 0110 1111t3

Assembly Code

1111 1111 1111 1111 1111 1010 0011 0100imm

s5

s6

s7

andi s5, t3, -1484

Source Values

Result

ori s6, t3, -1484

xori s7, t3, -1484

sign-extended

0011 1010 0111 0101 0000 1000 0010 0100

1111 1111 1111 1111 1111 1111 0111 1111

1100 0101 1000 1010 1111 0111 0101 1011

Digital Design & Computer Architecture Architecture

Shift Instructions

27

Shift amount is in (lower 5 bits of) a register

• sll: shift left logical
– Example: sll t0, t1, t2 # t0 = t1 << t2

• srl: shift right logical
– Example: srl t0, t1, t2 # t0 = t1 >> t2

• sra: shift right arithmetic
– Example: sra t0, t1, t2 # t0 = t1 >>> t2

Digital Design & Computer Architecture Architecture

Immediate Shift Instructions

28

Shift amount is an immediate between 0 to 31

• slli: shift left logical immediate
– Example: slli t0, t1, 23 # t0 = t1 << 23

• srli: shift right logical immediate
– Example: srli t0, t1, 18 # t0 = t1 >> 18

• srai: shift right arithmetic immediate
– Example: srai t0, t1, 5 # t0 = t1 >>> 5

Chapter 6: Architecture

Machine Language

Digital Design & Computer Architecture Architecture

Machine Language

30

You will need to be able to write machine code, but not yet

• Binary representation of instructions

• Computers only understand 1’s and 0’s

• 32-bit instructions
– Simplicity favors regularity: 32-bit data & instructions

• 4 Types of Instruction Formats:

– R-Type

– I-Type

– S/B-Type

– U/J-Type

Digital Design & Computer Architecture Architecture

R-Type

31

• Register-type

• 3 register operands:
– rs1, rs2: source registers

– rd: destination register

• Other fields:
– op: the operation code or opcode

– funct7,funct3:

 the function (7 bits and 3-bits, respectively)

 with opcode, tells computer what operation to perform

funct7 rs2 rs1 rd op

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

R-Type

funct3

31:25 24:20 19:15 14:12 11:7 6:0

Digital Design & Computer Architecture Architecture

Instruction Fields & Formats

32

Instruction op funct3 Funct7 Type

add 0110011 (51) 000 (0) 0000000 (0) R-Type

sub 0110011 (51) 000 (0) 0100000 (32) R-Type

and 0110011 (51) 111 (7) 0000000 (0) R-Type

or 0110011 (51) 110 (6) 0000000 (0) R-Type

addi 0010011 (19) 000 (0) - I-Type

beq 1100011 (99) 000 (0) - B-Type

bne 1100011 (99) 001 (1) - B-Type

lw 0000011 (3) 010 (2) - I-Type

sw 0100011 (35) 010 (2) - S-Type

jal 1101111 (111) - - J-Type

jalr 1100111 (103) 000 (0) - I-Type

lui 0110111 (55) - - U-Type

See Appendix B for other instruction encodings

Digital Design & Computer Architecture Architecture

R-Type Examples

33

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

0 20 19 18 510

funct7 rs2 rs1 rd opfunct3

32 7 6 5 510

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

0000 000 10100 10011 10010 011 0011000

funct7 rs2 rs1 rd opfunct3

0100 000 00111 00110 00101 011 0011000

add s2, s3, s4

sub t0, t1, t2

Field Values Machine Code

(0x01498933)

(0x407302B3)

Assembly

add x18,x19,x20

sub x5, x6, x7

Digital Design & Computer Architecture Architecture

I-Type

34

• Immediate-type

• 3 operands:
– rs1: register source operand

– rd: register destination operand

– imm: 12-bit two’s complement immediate

• Other fields:
– op: the opcode

– Simplicity favors regularity: all instructions have opcode

– funct3: the function (3-bit function code)

– with opcode, tells computer what operation to perform

imm11:0 rs1 rd op

12 bits 5 bits 3 bits 5 bits 7 bits

I-Type

funct3

31:20 19:15 14:12 11:7 6:0

Digital Design & Computer Architecture Architecture

I-Type Examples

35

addi s0, s1, 12

addi s2, t1, -14

Field Values Machine Code

(0x00C48413)

(0xFF230913)

Assembly

imm11:0 rs1 rd opfunct3

12 9 8 190

-14 6 18 190

imm11:0 rs1 rd opfunct3

0000 0000 1100 01001 01000 001 0011000

1111 1111 0010 00110 10010 001 0011000

lw t2, -6(s3) -6 19 7 32 (0xFFA9A383)1111 1111 1010 10011 00111 000 0011010

addi x8, x9, 12

addi x18,x6, -14

lw x7, -6(x19)

lh s1, 27(zero) 27 0 9 31
lh x9, 27(x0)

lb s4, 0x1F(s4)

12 bits 5 bits 3 bits 5 bits 7 bits

0x1F 20 20 30
lb x20,0x1F(x20)

(0x01FA0A03)

12 bits 5 bits 3 bits 5 bits 7 bits

0000 0001 1111 10100 10100 000 0011000

(0x01B01483)0000 0001 1011 00000 01001 000 0011001

Digital Design & Computer Architecture Architecture

Design Principle 4

36

Good design demands good compromises

• Multiple instruction formats allow flexibility
- add, sub: use 3 register operands

- lw, sw, addi: use 2 register operands and a
 constant

• Number of instruction formats kept small

- to adhere to design principles 1 and 3
(simplicity favors regularity and smaller is
faster).

Digital Design & Computer Architecture Architecture

Practice

37

Venus RV32I Simulator .text

Example for register inspection

addi t0, t0, 2016 # init t0 to 2016

ecall # Exit

.text

li s4, s4, 0b1010 # init s4

li s5, s5, 0b1100 # init s5

your code here

ecall # Exit

https://venus.kvakil.me/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

