πŸ“† Course Schedule

πŸ“† Course Schedule#

Note

This schedule is subject to change as appropriate.

Last Updated: 17 Aug 2025

Lsn

Topic

Reading

Due

1

Course Intro

2

Propositional Logic

1.1-1.2.5

3

Logical Equivalence

1.3.1-1.3.4

4

Predicates & Quantifiers

1.4-1.5

HW1(L2-3)

5

Rules of Inference

1.6

6

Intro to Proofs

1.7

HW2(L4-5)

7

M-day: no class, T-day: review

8

Sets & Set Operations

2.1-2.2

9

Functions

2.3

HW3(L6-8)

10

Sequences and Summations

2.4

11

Algorithms

3.1

HW4(L9-10)

12

Growth of Functions & Basic Complexity

3.2-3.3

Q1(L2-10)

13

Divisibility and Integers

4.1-4.2

14

Mathematical Induction

5.1

HW5(L11-13)

15

Strong Induction & Recursion

5.2-5.2.3, 5.3.2

16

Introduction to Graphs

10.1-10.2

Q2(L11-15)

17

Graph Representations & Connectivity

10.3-10.4

HW6(L14-15)

18

GR1 (L1-L15)

19

Euler and Hamilton Paths

10.5

20

Shortest-Path

10.6

HW7(L16-19)

21

Probability Models, Conditional Probability

1.2-1.3

22

Bayes’ rule, Independence of Events

1.4-1.5

HW8(L20-21)

23

Discrete Random Variables

2.1-2.2

24

Expectation, Mean, Variance

2.3-2.4

HW9(L22-23)

25

Joint PMFs

2.5

Q3(L16-L23)

26

Conditioning and Independence

2.6-2.7

27

Continuous RVs, PDFs, CDFs

3.1-3.2

HW10(L24-26)

28

Normal Random Variables

3.3

29

Joint PDFs of Continuous RVs, Conditioning

3.4-3.5

HW11(L27-28)

30

Continuous Bayes’ Rule

3.6

31

Derived Distributions

4.1

32

Covariance and Correlation

4.2

Q4(L24-31)

33

Conditional Expectation and Variance

4.3

HW12(L29-31)

34

GR2 (L15-L31)

35

Bayesian Inference

8.1

36

MAP Estimation, Bayesian LMS Estimation

8.2-8.3

HW13(L32-35)

37

Bayesian Linear LMS Estimation

8.4

38

Linear Regression

9.1-9.2

39

Hypothesis Testing

9.3

HW14(L36-38)

40

Review

9.3

Q5(32-39)

Final Exam (L1-L40)