Practice Problems (KEY)#


How many nodes and how many loops are in each of the circuits below?
Nodes: 4 Nodes: 6
Loops: 3 Loops: 7

Nodes: 4 Nodes: 4
Loops: 1 Loops: 7

Find \(V_R\) and \(V_P\).

If \(i_2=-2\,\mathrm{A}\), \(i_3=-5\,\mathrm{A}\), and \(i_4=4\,\mathrm{A}\), find \(i_1\) and \(i_5\).
Answer the following questions about the circuit below.

a. How many nodes and loops are in this circuit?
Nodes: 3
Loops: 3
b. Write out the KVL and KCL equations for the circuit.
\(V_Q - V_P - V_R = 0\)
\(V_R - V_S = 0\)
\(V_Q - V_P - V_S = 0\)
\(I_Q + I_P = 0\)
\(-I_P - I_R - I_S = 0\)
\(-I_Q + I_R + I_S = 0\)
c. Solve for the power consumed by each component in this circuit.
\(V_S=4\,\mathrm{V}\), \(V_R=4\,\mathrm{V}\), \(V_P=6\,\mathrm{V}\), \(V_Q=10\,\mathrm{V}\)
\(I_S=1\,\mathrm{A}\), \(I_R=1\,\mathrm{A}\), \(I_P=-2\,\mathrm{A}\), \(I_Q=2\,\mathrm{A}\)
\(P_S=4\,\mathrm{W}\), \(P_R=4\,\mathrm{W}\), \(P_P=12\,\mathrm{W}\), \(P_Q=20\,\mathrm{W}\)
Use KVL and KCL to solve for the unknown voltages and currents in the circuits below.

KVL Equations |
KCL Equations |
|---|---|
\(-V_G - 2\,\mathrm{V} + V_J = 0\) |
\(4\,\mathrm{A} + I_H - 3\,\mathrm{A} = 0\) |
\(2\,\mathrm{V} - 7\,\mathrm{V} - V_K = 0\) |
\(3\,\mathrm{A} + I_J - 5\,\mathrm{A} - 6\,\mathrm{A} = 0\) |
\(-V_L + V_K + 17\,\mathrm{V} = 0\) |
\(I_M + I_N + 5\,\mathrm{A} = 0\) |
\(-V_J + V_L - 6\,\mathrm{V} = 0\) |
\(6\,\mathrm{A} - I_N - I_H = 0\) |
\(V_G = 4\,\mathrm{V}\) |
\(I_M = -I_N - 5\,\mathrm{A}\) |
A satellite control module is connected to a data processing element modeled as a single \(12.5\,\mathrm{k}\Omega\) resistor (\(R_2\)). The system is powered by a \(5\,\mathrm{V}\) solar cell (\(V_S\)). Control module options are modeled as resistors with values:
\(R_1 = 5\,\mathrm{k}\Omega\)
\(R_1 = 10\,\mathrm{k}\Omega\)
\(R_1 = 15\,\mathrm{k}\Omega\)
If the circuit in the previous problem has the following requirements, which of the three options are viable?
Total current must not exceed \(250\,\mu\mathrm{A}\)
Voltage across the control module (\(V_1\)) must be at least \(2\,\mathrm{V}\)