Practice Problems (KEY)#

  1. Answer the following questions about the devices shown in the table below.

Device

Current

Voltage

A

3 \(\mathrm{A}_{RMS}\)

190 \(\mathrm{V}_{RMS}\)

B

8 \(\mathrm{A}_{RMS}\)

190 \(\mathrm{V}_{RMS}\)

C

3 \(\mathrm{A}_{RMS}\)

190 \(\mathrm{V}_{RMS}\)

X

10 \(\mathrm{A}_{RMS}\)

40 \(\mathrm{V}_{RMS}\)

Y

4 \(\mathrm{A}_{RMS}\)

40 \(\mathrm{V}_{RMS}\)

Z

5 \(\mathrm{A}_{RMS}\)

40 \(\mathrm{V}_{RMS}\)

a. Draw the block diagram to represent this set of devices.
b. Label circuit breaker locations and values.
c. Calculate total power supplied.

\[ P_{\mathrm{gen}} = I_S V_S = 18 \times 190 = 3.42\ \mathrm{kW} \]
  1. Calculate the following for the power distribution system below:

a. Turns ratio of the transformer
b. Circuit breaker values for circuit breakers A, B, and C
c. Power the source produces

\[ a = \frac{V_1}{V_2} = \frac{35}{205} = 0.171 \]
\[ P_{\mathrm{flaps,out}} = 15\ \mathrm{hp} \cdot \frac{1492\ \mathrm{W}}{2\ \mathrm{hp}} = 11.19\ \mathrm{kW} \]
\[ P_{\mathrm{flaps,in}} = \frac{11{,}190\ \mathrm{W}}{0.62} = 18\ \mathrm{kW} \]
\[ I_S = \frac{18{,}000\ \mathrm{W}}{205\ \mathrm{V}} = 88\ \mathrm{A} \]
\[ I_C = I_{\mathrm{Flaps}} + I_{\mathrm{Avionics}} + I_{\mathrm{Nav}} = 88 + 12 + 12 = 112\ \mathrm{A} \]
\[ \mathrm{CB}\ I_C = 112 \times 1.1 = 123\ \mathrm{A} \rightarrow 125\ \mathrm{A} \]
\[ P_C = V_C I_C = (205\ \mathrm{V}_{RMS})(112\ \mathrm{A}) = 22.97\ \mathrm{kW} \]
\[ P_B = \frac{22{,}970\ \mathrm{W}}{0.8} = 28.7\ \mathrm{kW} \]
\[ I_B = \frac{28{,}700\ \mathrm{W}}{32\ \mathrm{V}} = 897\ \mathrm{A} \]
\[ \mathrm{CB}\ I_B = 897 \times 1.1 = 987\ \mathrm{A} \rightarrow 1\ \mathrm{kA} \]
\[ I_A = I_{\mathrm{Comms}} + I_{\mathrm{Cam}} + I_B = 5 + 2.3 + 897 = 904\ \mathrm{A} \]
\[ \mathrm{CB}\ I_A = 904 \times 1.1 = 994\ \mathrm{A} \rightarrow 1\ \mathrm{kA} \]
\[ P_S = V_S I_S = 32 \times 904 = 28.9\ \mathrm{kW} \]
  1. T/F Buses work by delivering power to devices connected in series.

  2. T/F A circuit breaker works the same as a fuse in that it opens when current exceeds the breaker’s rating.

  3. The electrical system for a small reconnaissance aircraft is shown below. The aircraft has two buses, one at 160 \(\mathrm{V}_{RMS}\) and one at 50 \(\mathrm{V}_{RMS}\), powered by a 160 \(\mathrm{V}_{RMS}\) alternator.

a. What transformer turns ratio is required to drive the 50 \(\mathrm{V}_{RMS}\) bus?

\[ a = \frac{160}{50} = 3.2 \]

b. Given the following table of required currents, what circuit breaker ratings would you choose for breakers A, B, C, and D?

Equipment

Current (\(\mathrm{A}_{RMS}\))

Flaps

2.5

Avionics

4

Navigation

6

Comm

3.5

Camera

4.5

\[ I_D = 3.5 \Rightarrow \mathrm{CB}\ I_D = 3.85 \rightarrow 4\ \mathrm{A} \]
\[ I_C = 3.5 + 4.5 = 8 \Rightarrow \mathrm{CB}\ I_C = 8.8 \rightarrow 9\ \mathrm{A} \]
\[ I_B = \frac{8}{3.2} = 2.5 \Rightarrow \mathrm{CB}\ I_B = 2.75 \rightarrow 3\ \mathrm{A} \]
\[ I_A = 2.5 + 4 + 6 + 2.5 = 15 \Rightarrow \mathrm{CB}\ I_A = 16.5\ \mathrm{A} \]
  1. The electrical system for a fighter is shown below. The aircraft has two buses, one at 80 \(\mathrm{V}_{RMS}\) and one at 20 \(\mathrm{V}_{RMS}\), powered by a 115 \(\mathrm{V}_{RMS}\) alternator.

a. What transformer turns ratios are required?

\[ a_{\mathrm{XFMR1}} = \frac{115}{80} = 1.4375 \quad a_{\mathrm{XFMR2}} = \frac{115}{20} = 5.75 \]

b. Given the following table, how much power must the alternator provide?

Equipment

Current (\(\mathrm{A}_{RMS}\))

Flaps

5

Landing Gear

8

Radar

4

Computer

2

IRS

5

\[ I_{20V} = 2 + 5 = 7 \Rightarrow I_{1,\mathrm{XFMR2}} = \frac{7}{5.75} = 1.21\ \mathrm{A} \]
\[ I_{80V} = 5 + 8 + 4 = 17 \Rightarrow I_{1,\mathrm{XFMR1}} = \frac{17}{1.4375} = 11.8\ \mathrm{A} \]
\[ I_S = 1.21 + 11.8 = 13\ \mathrm{A} \]
\[ P_{\mathrm{ALT}} = (13)(115) = 1.495\ \mathrm{kW} \]

Alternatively,

\[ P_{\mathrm{ALT}} = 80(5 + 8 + 4) + 20(2 + 5) = 1.5\ \mathrm{kW} \]
  1. The electrical system for a fighter is shown below. The aircraft has two busses, one at 80 VRMS and one at 20 VRMS, powered by a 115-VRMS alternator.

a. What transformer turns ratios are required to drive the two buses?

\[ a_{\text{XFMR2}}=\frac{V_1}{V_2}=\frac{80}{20}=4 \]
\[ a_{\text{XFMR1}}=\frac{V_1}{V_2}=\frac{115}{80}=1.4375 \]

b. Given the following table of required currents, how much power must the alternator provide?

Equipment

Current (\(A_{\text{RMS}}\))

Flaps

5

Landing Gear

8

Radar

4

Computer

2

IRS

5

\[ I_{20\text{V}_{\text{RMS}}}=I_{\text{Comp}}+I_{\text{IRS}}=2\text{ A}+5\text{ A}=7\text{ A} \]
\[ a_{\text{XFMR2}}=\frac{I_{20\text{V}_{\text{RMS}}}}{I_{1,\text{XFMR2}}} \quad;\quad I_{1,\text{XFMR2}}=\frac{I_{20\text{V}_{\text{RMS}}}}{a_{\text{XFMR2}}} =\frac{7}{4}=1.75\text{ A} \]
\[ I_{80\text{V}_{\text{RMS}}}=I_{\text{Flaps}}+I_{\text{LG}}+I_{\text{Radar}}+I_{1,\text{XFMR2}} =5\text{ A}+8\text{ A}+4\text{ A}+1.75\text{ A}=18.75\text{ A} \]
\[ a_{\text{XFMR1}}=\frac{I_{80\text{V}_{\text{RMS}}}}{I_{1,\text{XFMR1}}} \quad;\quad I_{1,\text{XFMR1}}=\frac{I_{80\text{V}_{\text{RMS}}}}{a_{\text{XFMR1}}} =\frac{18.75}{1.4375}=13\text{ A}=I_s \]
\[ P_{\text{ALT}}=P_s=I_sV_s=(13\text{ A})(115\text{ V})=1.495\text{ kW} \]
\[ \text{Since there are no losses in this system, } P_{\text{ALT}}=P_{\text{useful}}=P_{\text{load}} =80\text{ V}_{\text{RMS}}(5+8+4)\text{ A}_{\text{RMS}} +20\text{ V}_{\text{RMS}}(2+5)\text{ A}_{\text{RMS}} \approx 1.5\text{ kW} \]
  1. An aircraft requires a 205 \(\mathrm{V}_{RMS}\) bus and a 32 V DC bus. Calculate the transformer turns ratio and breaker values for breakers A and B. The Comm draws 4 A and the Camera draws 5 A. The AC–DC converter efficiency is 80%.

Solution#

1) Compute the transformer turns ratio#

The AC–DC converter input voltage is given in the diagram as an RMS value, so we can use RMS voltages directly:

\(a=\dfrac{V_1}{V_2}=\dfrac{205}{35}=5.86\)

2) Size the breaker at location B#

The comm and camera current draws are given:

  • \(I_{\text{Comm}} = 4~\text{A}\)

  • \(I_{\text{Camera}} = 5~\text{A}\)

So the breaker at B must be larger than:

\(I_B > 4+5 = 9~\text{A}\)

Choose the next standard value:

  • CB at B: 10 A

3) Compute DC load power on the 32 V bus#

\(P_{\text{Comm}} = (32~\text{V})(4~\text{A}) = 128~\text{W}\)

\(P_{\text{Camera}} = (32~\text{V})(5~\text{A}) = 160~\text{W}\)

Total DC power:

\(P_{\text{DC,total}} = 128 + 160 = 288~\text{W}\)

4) Account for AC–DC converter efficiency (80%)#

\(P_{\text{in,ACDC}} = \dfrac{288~\text{W}}{0.8} = 360~\text{W}\)

This is the power on the transformer secondary side feeding the AC–DC converter.

Assuming an ideal (lossless) transformer:

\(P_{\text{primary}} = P_{\text{secondary}} = 360~\text{W}\)

5) Compute transformer primary current#

Primary voltage is \(205~\text{V}_{\text{RMS}}\), so:

\(I_{\text{XFMR}} = \dfrac{360~\text{W}}{205~\text{V}_{\text{RMS}}} = 1.75~\text{A}\)

Apply a 10% margin:

\(I_{\text{CB}} = 1.75 \times 1.1 = 1.925~\text{A}\)

Choose a standard breaker value:

  • CB at I: \(\approx 2~\text{A}\)

  1. Is the retrofit design below valid? Why or why not?

No, this is not a good design. The added transformer is connected to a DC bus, and transformers only operate with AC (they require a changing magnetic field). With DC input, the transformer will not transfer power, so there will be no usable voltage or current on the secondary side. As a result, the 5 V bus will not receive any power. econdary, and the 5 V bus will receive no power.

  1. How many breakers should be added to the building security system below, and where?

Solution#

Because every component is critical to the system, you don’t want a single fault to take down an entire bus—or, worse, the whole system.

  1. Per-load protection (required):
    Install a dedicated breaker for each load connected to the 60 V and 25 V buses.

    • Total: 8 breakers

  2. Bus-level protection (recommended):
    Add breakers upstream of each bus to protect against excessive combined bus current draw.

    • Total: +2 breakers (now 10)

  3. Additional isolation (optional, “belt and suspenders”):
    Consider extra breakers:

    • Between XFMR2 and the ADC

    • On either side of the transformers
      This helps isolate internal shorts or failures within the ADC or transformers.

    • Total: up to +3 breakers (up to 13)

Final count: plan for 10–13 breakers

  • 10 = baseline configuration

  • 13 = more robust / optimal configuration