Practice Problems (KEY)#
Problem 1#
Express the logic diagram as a Boolean equation.

Problem 2#
Construct a truth table from the following Boolean equation
Two Methods for Constructing the Truth Table#
Given the Boolean expression:
Method 1 — Term Matching (Minterm Identification)#
Place a 1 in the truth table for any row that satisfies one of the product terms:
\(A'B'C'\) → corresponds to \((A,B,C) = (0,0,0)\)
\(AB\) → corresponds to \((A,B) = (1,1)\) (for either value of \(C\))
\(BC'\) → corresponds to \((B,C) = (1,0)\) (for either value of \(A\))
All other rows receive a 0.
\(A\) |
\(B\) |
\(C\) |
\(\text{Out}\) |
|---|---|---|---|
0 |
0 |
0 |
\(A'B'C' = 1\) |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
\(BC' = 1\) |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
\(AB \text{ or } BC' = 1\) |
1 |
1 |
1 |
\(AB = 1\) |
Method 2 — Direct Substitution#
For each row of the truth table:
Substitute the values of \(A\), \(B\), and \(C\) into
$\( F = A'B'C' + AB + BC' \)$Evaluate each product term using Boolean multiplication.
OR the resulting values to determine the final output.
\(A\) |
\(B\) |
\(C\) |
\(\text{Out}\) |
|---|---|---|---|
0 |
0 |
0 |
\(1\cdot1\cdot1 + 0\cdot0 + 1\cdot0 = 1\) |
0 |
0 |
1 |
\(1\cdot1\cdot0 + 0\cdot0 + 0\cdot0 = 0\) |
0 |
1 |
0 |
\(1\cdot0\cdot1 + 0\cdot1 + 1\cdot1 = 1\) |
0 |
1 |
1 |
\(1\cdot0\cdot0 + 1\cdot0 + 1\cdot0 = 0\) |
1 |
0 |
0 |
\(0\cdot1\cdot1 + 1\cdot0 + 0\cdot1 = 0\) |
1 |
0 |
1 |
\(0\cdot1\cdot0 + 1\cdot0 + 0\cdot0 = 0\) |
1 |
1 |
0 |
\(0\cdot0\cdot1 + 1\cdot1 + 1\cdot1 = 1\) |
1 |
1 |
1 |
\(0\cdot0\cdot0 + 1\cdot1 + 1\cdot0 = 1\) |
Problem 3#
Given the truth table, create a Boolean equation (do not simplify)
\(A\) |
\(B\) |
\(C\) |
\(\text{Out}\) |
SOP Term |
|---|---|---|---|---|
0 |
0 |
0 |
1 |
\(A'B'C'\) |
0 |
0 |
1 |
0 |
|
0 |
1 |
0 |
1 |
\(A'BC'\) |
0 |
1 |
1 |
0 |
|
1 |
0 |
0 |
1 |
\(AB'C'\) |
1 |
0 |
1 |
0 |
|
1 |
1 |
0 |
1 |
\(ABC'\) |
1 |
1 |
1 |
1 |
\(ABC\) |
Problem 4#
For the logic diagram below, create a Boolean equation, simplify, and then fill out the truth table

Rearrange terms:
Apply Identity 3:
Apply Identity 10b (DeMorgan’s Law):
Rearrange:
Apply Identity 4:
Apply Boolean addition rule:
\(A\) |
\(B\) |
\(\text{Out}\) |
|---|---|---|
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
Problem 5#
Given the truth table, create a Boolean equation, simplify, and then create a logic diagram. Hint: This simplifies to 1 NOT, 1 AND, and 2 OR.
\(A\) |
\(B\) |
\(C\) |
\(\text{Out}\) |
SOP Term |
|---|---|---|---|---|
0 |
0 |
0 |
1 |
\(A'B'C'\) |
0 |
0 |
1 |
1 |
\(A'B'C\) |
0 |
1 |
0 |
0 |
|
0 |
1 |
1 |
0 |
|
1 |
0 |
0 |
0 |
|
1 |
0 |
1 |
0 |
|
1 |
1 |
0 |
1 |
\(ABC'\) |
1 |
1 |
1 |
1 |
\(ABC\) |
Factor using Identity 9a:
Apply Identity 4:
Factor using Identity 9a:
Apply Identity 4:
Apply Identity 10a (DeMorgan’s Law):
