Practice Problems (KEY)#

  1. Answer the following questions about the circuit below.

a. Find \(I_{S}\)#

\[ R_{3,4,5} = 3\,\Omega + 4\,\Omega + 5\,\Omega = 12\,\Omega \]
\[ R_{2,3,4,5} = \frac{R_{2}R_{3,4,5}}{R_{2} + R_{3,4,5}} = \frac{(2\,\Omega)(12\,\Omega)}{2\,\Omega + 12\,\Omega} = 1.71\,\Omega \]
\[ R_{eq} = R_{1} + R_{2,3,4,5} + R_{6} = 1\,\Omega + 1.71\,\Omega + 6\,\Omega = 8.71\,\Omega \]
\[ I_{S} = \frac{V_{S}}{R_{eq}} = \frac{5\,\mathrm{V}}{8.71\,\Omega} = 574\,\mathrm{mA} \]

b. Find the power consumed by \(R_{2}\)#

Current divider, where \(R_{2,3,4,5}\) is the equivalent resistance of the parallel portion:

\[ I_{2} = I_{S}\frac{R_{2,3,4,5}}{R_{2}} = (574\,\mathrm{mA})\frac{1.71\,\Omega}{2\,\Omega} = 491\,\mathrm{mA} \]
\[ P_{2} = I_{2}^{2}R_{2} = (0.491\,\mathrm{A})^{2}(2\,\Omega) = 482\,\mathrm{mW} \]

Using a voltage divider:

\[ V_{2} = V_{S}\frac{R_{2,3,4,5}}{R_{eq}} = (5\,\mathrm{V})\frac{1.71\,\Omega}{8.71\,\Omega} = 982\,\mathrm{mV} \]
\[ P_{2} = \frac{V_{2}^{2}}{R_{2}} = \frac{(0.982\,\mathrm{V})^{2}}{2\,\Omega} = 482\,\mathrm{mW} \]

Find \(R_{eq}\), \(I_{S}\), \(P_{2}\), and \(P_{Total}\).

\[ R_{eq} = R_{1} + R_{2,3} = 50\,\Omega + \left(\frac{1}{500\,\Omega} + \frac{1}{500\,\Omega}\right)^{-1} = 300\,\Omega \]
\[ I_{S} = \frac{V_{S}}{R_{eq}} = \frac{1.5\,\mathrm{V}}{300\,\Omega} = 5\,\mathrm{mA} \]
\[ P_{Total} = I_{S}V_{S} = (5\,\mathrm{mA})(1.5\,\mathrm{V}) = 7.5\,\mathrm{mW} \]
\[ I_{2} = \frac{R_{2,3}}{R_{2}}I_{S} = \frac{250\,\Omega}{500\,\Omega}(5\,\mathrm{mA}) = 2.5\,\mathrm{mA} \]
\[ P_{2} = I_{2}^{2}R_{2} = (2.5\,\mathrm{mA})^{2}(500\,\Omega) = 3.125\,\mathrm{mW} \]

Find the equivalent resistance and determine if the fuse rating is high enough.

\[ R_{eq} = \left(\frac{1}{50\,\Omega + 50\,\Omega} + \frac{1}{50\,\Omega}\right)^{-1} = 33.3\,\Omega \]
\[ I_{S} = \frac{V_{S}}{R_{eq}} = \frac{15\,\mathrm{V}}{33.3\,\Omega} = 450\,\mathrm{mA} \]

No, the fuse rating is not high enough.


Determine the appropriate resistor so the voltage across the load is 45 V.

\[ V_{Adapter} = V_{S} - V_{Lamp} = 115\,\mathrm{V} - 45\,\mathrm{V} = 70\,\mathrm{V} \]
\[ R_{Adapter} = \frac{V_{Adapter}}{I_{S}} = \frac{70\,\mathrm{V}}{2\,\mathrm{A}} = 35\,\Omega \]