Practice Problems (KEY)#

  1. Answer the following questions about the circuit below.

a. Find \(I_{S}\)#

We reduce the circuit step by step by identifying series and parallel combinations.

First, combine the resistors that are in series:

\[ R_{\text{eq},1} = R_3 + R_4 + R_5 \]

Next, combine this equivalent resistance in parallel with \(R_2\):

\[ R_{\text{eq},2} = \left( \frac{1}{R_2} + \frac{1}{R_{\text{eq},1}} \right)^{-1} \]

Substituting for \(R_{\text{eq},1}\) gives

\[ R_{\text{eq},2} = \left( \frac{1}{R_2} + \frac{1}{R_3 + R_4 + R_5} \right)^{-1} \]

Finally, add the remaining series resistors to obtain the total equivalent resistance:

\[ R_{\text{eq}} = R_1 + R_{\text{eq},2} + R_6 \]

or, written in a single expression,

\[ R_{\text{eq}} = R_1 + \left( \frac{1}{R_2} + \frac{1}{R_3 + R_4 + R_5} \right)^{-1} + R_6 \]
\[ = 8.71\,\Omega \]
\[ I_{S} = \frac{V_{S}}{R_{eq}} = \frac{5\,\mathrm{V}}{8.71\,\Omega} = 574\,\mathrm{mA} \]

b. Find the power consumed by \(R_{2}\)#

Current divider, where \(R_{2,3,4,5}\) is the equivalent resistance of the parallel portion:

\[ I_{2} = I_{S}\frac{R_{2,3,4,5}}{R_{2}} = (574\,\mathrm{mA})\frac{1.71\,\Omega}{2\,\Omega} = 491\,\mathrm{mA} \]
\[ P_{2} = I_{2}^{2}R_{2} = (0.491\,\mathrm{A})^{2}(2\,\Omega) = 482\,\mathrm{mW} \]

Using a voltage divider:

\[ V_{2} = V_{S}\frac{R_{2,3,4,5}}{R_{eq}} = (5\,\mathrm{V})\frac{1.71\,\Omega}{8.71\,\Omega} = 982\,\mathrm{mV} \]
\[ P_{2} = \frac{V_{2}^{2}}{R_{2}} = \frac{(0.982\,\mathrm{V})^{2}}{2\,\Omega} = 482\,\mathrm{mW} \]

Find \(R_{eq}\), \(I_{S}\), \(P_{2}\), and \(P_{Total}\).

\[ R_{eq} = R_{1} + R_{2,3} = 50\,\Omega + \left(\frac{1}{500\,\Omega} + \frac{1}{500\,\Omega}\right)^{-1} = 300\,\Omega \]
\[ I_{S} = \frac{V_{S}}{R_{eq}} = \frac{1.5\,\mathrm{V}}{300\,\Omega} = 5\,\mathrm{mA} \]
\[ P_{Total} = I_{S}V_{S} = (5\,\mathrm{mA})(1.5\,\mathrm{V}) = 7.5\,\mathrm{mW} \]
\[ I_{2} = \frac{R_{2,3}}{R_{2}}I_{S} = \frac{250\,\Omega}{500\,\Omega}(5\,\mathrm{mA}) = 2.5\,\mathrm{mA} \]
\[ P_{2} = I_{2}^{2}R_{2} = (2.5\,\mathrm{mA})^{2}(500\,\Omega) = 3.125\,\mathrm{mW} \]

Find the equivalent resistance and determine if the fuse rating is high enough.

\[ R_{\text{EQ}} = \left( \frac{1}{\dfrac{1}{R_1} + \dfrac{1}{R_3} + \dfrac{1}{R_2 + R_4}} \right) \]
\[ R_{\text{EQ}} = \left( \frac{1}{\dfrac{1}{470\,\Omega} + \dfrac{1}{330\,\Omega} + \dfrac{1}{1.2\,\text{k}\Omega + 1\,\text{k}\Omega}} \right) = 182.78\,\Omega \]
\[ V_S = I_S R_{\text{EQ}} \]
\[ I_S = \frac{V_S}{R_{\text{EQ}}} = \frac{15\,\text{V}}{182.78\,\Omega} = 82.10\,\text{mA} \]

No, the fuse rating is not high enough.

\[ 82.1\,\text{mA} > 60\,\text{mA} \quad \Rightarrow \quad \text{the fuse will pop} \]

The fuse should be designed between

\[ I_{\text{fuse,min}} = 1.1 \times 82.1\,\text{mA} = 91\,\text{mA} \]

and

\[ I_{\text{fuse,max}} = 1.5 \times 82.1\,\text{mA} = 123\,\text{mA}. \]

Choose a 100mA circuit breaker from the parts bin.


Determine the appropriate resistor so the voltage across the load is 45 V.

\[ V_{Adapter} = V_{S} - V_{Lamp} = 115\,\mathrm{V} - 45\,\mathrm{V} = 70\,\mathrm{V} \]
\[ R_{Adapter} = \frac{V_{Adapter}}{I_{S}} = \frac{70\,\mathrm{V}}{2\,\mathrm{A}} = 35\,\Omega \]